Vestnik КRAUNC. Fiz.-Mat. nauki. 2024. vol. 48. no. 3. P. 95 – 119. ISSN 2079-6641
MATHEMATICAL MODELING
https://doi.org/10.26117/2079-6641-2024-48-3-95-119
Research Article
Full text in Russian
MSC 26A33, 86A17, 86A22, 49N45
Identification of Parameters of the Mathematical α-Model of Radon Transport in the Accumulation Chamber Based on Data from the Karymshina Site in Kamchatka
D. A. Tverdyi^{\ast}¹, E. O. Makarov², R. I. Parovik²
¹Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034, Paratunka village, Mirnaya str., 7, Russia
²Kamchatka Branch of the Federal Research Center «Unified Geophysical Service of the Russian Academy of Sciences», 683023, Petropavlovsk-Kamchatsky, Piipa Boulevard st., 9, Russia
Abstract. Radon is an inert radioactive gas, and studies of its variations in relation to seismicity are considered promising for the development of earthquake prognosis methods. A network of observation points has been deployed on the Kamchatka peninsula, where radon volumetric activity (RVA) is monitored using accumulation chambers with gas-discharge counters. Analysis of RVA data within the framework of radon monitoring is one of the methods of searching for precursors of seismic events. This is due to the fact that changes in the stress-strain state of the geo-environment, through which the gas flows, affect the RVA. The change in radon transport intensity due to changes in the stress-strain state of the geosphere is described by a fractional differentiation operator of constant real order α, which is related to the permeability of the geosphere. It is known that the RVA in the storage tank with sensors is also affected by the air exchange rate λ0, the effect of which should be taken into account in the study of the radon transport process. The aim of the research is to study the accumulation of radon in the chamber, which consists in the identification of the values of the parameters λ0 and α by solving the corresponding inverse problem. As a result of the research it was shown that for the hereditary α-model of radon transport by the Levenberg-Mackwardt method with the involvement of experimental data of RVA it is possible to determine the optimal values of its parameters λ0 and α. The obtained model curves agree well with the RVA data obtained within the framework of the well-known classical model of radon transport in an accumulation chamber.
Key words: мathematical modeling, dynamic processes, radon volume activity, Kamchatka, earthquake precursors, fractional derivatives, Gerasimov-Caputo, memory effect, nonlocality, nonlinear equations, inverse problems, unconditional optimization, Levenberg-Marquardt algorithm, С, Gnuplot.
Received: 27.09.2024; Revised: 30.09.2024; Accepted: 20.10.2024; First online: 20.11.2024
For citation. Tverdyi D. A., Makarov E. O., Parovik R. I. Identification of parameters of the mathematical α-model of radon transport in the accumulation chamber based on data from the Karymshina site in Kamchatka. Vestnik KRAUNC. Fiz.-mat. nauki. 2024, 48: 3, 95-119. EDN: AUYJMD. https://doi.org/10.26117/2079-6641-2024-48-3-95-119.
Funding. The research was funded by a grant from the Russian Science Foundation, project number 22-11-00064, which can be found at https://rscf.ru/project/22-11-00064/. The work was supported by Ministry of Science and Higher Education of the Russian Federation (075-00682-24). The research was funded by a grant from the Russian Science Foundation, project number 23-71-01050, which can be found at https://rscf.ru/project/23-71-01050/
Competing interests. There are no conflicts of interest regarding authorship and publication.
Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.
^{\ast}Correspondence: E-mail: tverdyi@ikir.ru
The content is published under the terms of the Creative Commons Attribution 4.0 International License
© Tverdyi D. A., Makarov E. O., Parovik R. I., 2024
© Institute of Cosmophysical Research and Radio Wave Propagation, 2024 (original layout, design, compilation)
References
- Rudakov V.P. Emanacionnyj monitoring geosred i processov [Emanational monitoring of geoenvironments and processes]. Moscow: Science World, 2009, 175 pp., isbn: 978-5-91522-102-3 (In Russian)
- Zuzel G., Simgen H. High sensitivity radon emanation measurements, Applied radiation and isotopes, 2009, vol. 67, no. 5, pp. 889–893. DOI: 10.1016/j.apradiso.2009.01.052.
- Makarov E. O. Firstov P.P., Voloshin V. N. Hardware complex for recording soil gas concentrations and searching for precursor anomalies before strong earthquakes in South Kamchatka, Seismic instruments, 2013, vol. 49, no. 1, pp. 46–52. DOI: 10.3103/S0747923913010064
- Firstov P.P., Rudakov V.P. Results from observations of subsurface radon in 1997-2000 at the Petropavlovsk-Kamchatskii geodynamic site. Journal of Volcanology and Seismology, 2003, no. 1, pp. 26–41 (In Russian)
- Firstov P.P. et al. Search for predictive anomalies of strong earthquakes according to monitoring of subsoil gases at Petropavlovsk-Kamchatsky geodynamic test site. Geosystems of Transition Zones, 2018, vol. 2, no. 1, pp. 16–32, DOI: 10.30730/2541-8912.2018.2.1.016-032, (In Russian)
- Barberio M. et al. Diurnal and Semidiurnal Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italy. Water, 2018, vol. 10, no. 9:1276. DOI: 10.3390/w10091276.
- Neri M., Giammanco S., Ferrera E., Patane G., Zanon V. Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: The example of Mt. Etna (Italy), Journal of Environmental Radioactivity, 2011, vol. 102, no. 9, pp. 863–870. DOI: 10.1016/j.jenvrad.2011.05.002.
- Petraki E., et al. Radon-222: A Potential Short-Term Earthquake Precursor, Earth Science & Climatic Change, 2015, vol. 6, no. 6. DOI: 10.4172/2157-7617.1000282.
- Hauksson E. Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis, Journal of Geophysical Research: Solid Earth, 1981, vol. 86, no. B10, pp. 9397–9410. DOI: 10.1029/JB086iB10p09397.
- Inan S., Akgul T., Seyis C., Saatcilar R., Baykut S., Ergintav S., Bas M. Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, Journal of Geophysical Research: Solid Earth, 2008, vol. 113, no. B3, pp. 1–15. DOI: 10.1029/2007JB005206.
- Biryulin S. V., Kozlova I. A., Yurkov A. K. Investigation of informative value of volume radon activity in soil during both the stress build up and tectonic earthquakes in the South Kuril region, Bulletin of Kamchatka Regional Association «Educational-Scientific Center» Earth Sciences, 2019, vol. 4, no. 44, pp. 73–83. DOI: 10.31431/1816-5524-2019-4-44-73-83.
- Firstov P.P., Makarov E. O. Dynamics of subsurface radon in Kamchatka and strong earthquakes. Petropavlovsk-Kamchatsky, Vitus Bering Kamchatka State University, 2018, 148 pp., isbn: 978-5-7968-0691-3 (In Russian)
- Dubinchuk V. T. Radon as a precursor of earthquakes, Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions, 1993, pp. 9–22.
- Vasilyev A. V., Zhukovsky M. V. Determination of mechanisms and parameters which affect radon entry into a room, Journal of Environmental Radioactivity, 2013, vol. 124, pp. 185–190. DOI: 10.1016/j.jenvrad.2013.04.014.
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier, 2006, 540 pp., isbn: 9780444518323.
- Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. New York, Academic Press, 1999, 340 pp., isbn: 9780125588409.
- Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow,: Fizmatlit, 2003, 272 pp., isbn: 5-9221-0440-3 (In Russian)
- King C. Y. Gas-geochemical approaches to earthquake prediction, Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions, 1993, pp. 22–36.
- Tverdyi D. A., Makarov E. O., Parovik R. I. Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber, Mathematics, 2023, vol. 11, no. 4:850, pp. 1–20. DOI: 10.3390/math11040850.
- Parovik R. I., Shevtsov B. M. Radon transfer processes in fractional structure medium, Mathematical Models and Computer Simulation, 2010, vol. 2, pp. 180–185. DOI: 10.1134/S2070048210020055.
- Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P.P. Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance, E3S Web Conference, 2020, vol. 196, no. 02027, pp. 1–6. DOI: 10.1051/e3sconf/202019602027.
- Tverdyi D. A., Makarov E. O., Parovik R. I. Research of Stress-Strain State of Geo-Environment by Emanation Methods on the Example of alpha(t)-Model of Radon Transport, Bulletin KRASEC. Physical and Mathematical Sciences, 2023, vol. 44, no. 3, pp. 86–104. DOI: 10.26117/2079-6641-2023-44-3-86-104.(In Russian)
- Gerasimov A. N. Generalization of linear deformation laws and their application to internal friction problems, Applied Mathematics and Mechanics, 1948, vol. 12, pp. 529–539.
- Caputo M. Linear models of dissipation whose Q is almost frequency independent – II, Geophysical Journal International, 1967, vol. 13, no. 5, pp. 529–539. DOI: 10.1111/j.1365-246X.1967.tb02303.x.
- Mueller J. L., Siltanen S. Linear and Nonlinear Inverse Problems with Practical Applications. Philadelphia, Society for Industrial and Applied Mathematics, 2012, 372 pp.
- Tarantola A. Inverse problem theory : methods for data fitting and model parameter estimation, Amsterdam and New York: Elsevier Science Pub. Co., 1987, 613 pp.
- Arregui I. Inversion of Physical Parameters in Solar Atmospheric Seismology, Multiscale Dynamical Processes in Space and Astrophysical Plasmas, 2012, pp. 159–169. DOI: 10.1007/978-3-642-30442-2_18
- Tahmasebi P., Javadpour F., Sahimi M. Stochastic shale permeability matching: Threedimensional characterization and modeling, International Journal of Coal Geology, 2016, pp. 231–242, vol. 165, DOI: 10.1016/j.coal.2016.08.024.
- Lailly P. The seismic inverse problem as a sequence of before stack migrations, Conference on Inverse Scattering, Theory and application, 1983, pp. 206–220.
- Utkin V. I., Yurkov A. K. Radon as a tracer of tectonic movements, Russian Geology and geophysics, 2010, vol. 51, no. 2, pp. 220–227. DOI: 10.1016/j.rgg.2009.12.022
- Parovik R. I. Matematicheskie modeli neklassicheskoj teorii emanacionnogo metoda [Mathematical models of the neoclassical theory of the emanation method]. Petropavlovsk- Kamchatsky, Vitus Bering Kamchatka State University, 2014, 80 pp., isbn: 978-5-7968-0450-6(In Russian)
- Ponamarev A. S. Frakcionirovanie v gidroterme kak potencial’naya vozmozhnost’ formirovaniya predvestnikov zemletryasenij [Fractionation in hydrothermal fluid as a potential opportunity for the formation of earthquake precursors]. Geohimiya [Geochemistry], 1989, no. 5, pp. 714–724 (In Russian)
- Barsukov V. L., Varshal G. M., Garanin A. V., Zamokina N. S. Znachenie gidrogeohimicheskih metodov dlya kratkosrochnogo prognoza zemletryasenij [Significance of hydrogeochemical methods for short-term earthquake prediction], In book: Gidrogeohimicheskie predvestniki zemletryasenij [Hydrogeochemical precursors of earthquakes], 1985, Moscow: Science, pp. 3–16.
- Etiope G., Martinelli G. Migration of carrier and trace gases in the geosphere: an overview, Physics of the Earth and Planetary Interiors, 2002, vol. 129, no. 3–4, pp. 185–204. DOI: 10.1016/S0031-9201(01)00292-8.
- Varhegyi A., Baranyi I., Somogyi G. A. Model for the vertical subsurface radon transport in «geogas» microbubbles, Geophysical Transactions, 1986, vol. 32, no. 3, pp. 235–253.
- Gorbushina L. V., Ryaboshtan YU. S. Emanacionnyj metod indikacii geodinamicheskih processov pri inzhenerno-geologicheskih izyskaniyah [Emanation method of indication of geodynamic processes in engineering-geological surveys]. Sovetskaya geologiya [Soviet geology], 1975, pp. 106–112 (In Russian)
- Kozlova I. A., Yurkov A. K. Reflection consecutive seismic events in the field of radon volume activity. Ural’skij geofizicheskij vestnik [Ural Geophysical Bulletin], 1975, no. 1(27), pp. 35–39 (In Russian)
- Gudzenko V. V., Dubinchuk V. T. Izotopy radiya i radon v prirodnyh vodah [Isotopes of radium and radon in natural waters]. Moscow: Science, 1987, 156 pp.(In Russian)
- Novikov G. F. Radiometricheskaya razvedka [Radiometric intelligence]. Leningrad: Nedra, 1989, 406 pp., isbn: 5-247-00832-4.(In Russian)
- Uchaikin V. V. Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. Berlin/Heidelberg, Springer, 2013, 373 pp. DOI: 10.1007/978-3-642-33911-0.
- Volterra V. Sur les ´equations int´egro-diff´erentielles et leurs applications, Acta Mathematica, 1912, vol. 35, no. 1, pp. 295–356. DOI: 10.1007/BF02418820.
- Patnaik S., Hollkamp J.P., Semperlotti F. Applications of variable-order fractional operators: a review, Proceedings of the Royal Society A, 2020, vol. 476, no. 2234, pp. 20190498. DOI: 10.1098/rspa.2019.0498.
- Coimbra C. F.M. Mechanics with variable-order differential operators, Annalen der Physik, 2003, vol. 515, no. 11-12, pp. 692–703. DOI: 10.1002/andp.200351511-1203.
- Mandelbrot B. B. The fractal geometry of nature. New York, W.H. Freeman and Co., 1982, 468 pp.
- Tverdyi D. A., Parovik R. I. Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation, Fractal and Fractional, 2022, vol. 6, no. 1, pp. 23. DOI: 10.3390/fractalfract6010023.
- Tverdyi D. A., Parovik R. I. Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect, Fractal and Fractional, 2022, vol. 6, no. 3, pp. 163. DOI: 10.3390/fractalfract6030163.
- Chicco D., Warrens M. J., Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Computer Science, 2021, no. 299, pp. e623. DOI: 10.7717/peerj-cs.623.
- Cox D. R. Hinkley D. V. Theoretical Statistics, 1st edition. New York, Chapman and Hall/CRC, 1974, 528 pp., isbn: 9780429170218.
- Dennis J. E., Robert Jr., Schnabel B. Numerical methods for unconstrained optimization and nonlinear equations. Philadelphia, SIAM, 1996, 394 pp., isbn: 9781611971200
- Gill P. E., Murray W., Wright M. H. Practical Optimization. Philadelphia, SIAM, 2019, 421 pp.
- Levenberg K. A method for the solution of certain non-linear problems in least squares, Quarterly of applied mathematics, 1944, vol. 2, no. 2, pp. 164–168. DOI: 10.1090/qam/10666.
- Marquardt D. W. An algorithm for least-squares estimation of nonlinear parameters, Journal of the society for Industrial and Applied Mathematics, 1963, vol. 11, no. 2, pp. 431–441. DOI: 10.1137/0111030.
- Ford W. Numerical linear algebra with applications: Using MATLAB, 1st edition. Massachusetts, Academic Press, 2014, 628 pp., DOI: 10.1016/C2011-0-07533-6
- Janert P.K. Gnuplot in Action: Understanding Data with Graphs, 2nd Edition. New-York: Manning, 2016, 400 pp., isbn: 1633430189.
Information about the authors
Tverdyi Dmitrii Alexsandrovich – PhD (Phys. & Math.), Researcher, Electromagnetic Radiation Laboratory, Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS, Paratunka village, Russia, ORCID 0000-0001-6983-5258.
Makarov Evgeny Olegovich – PhD (Phys. & Math.), Senior Researcher, Acoustic and Radon Monitoring Laboratory, Kamchatka Branch of the Federal Research Centre “Unified Geophysical Service of the Russian Academy of Sciences Petropavlovsk-Kamchatsky, Russia, ORCID 0000-0002-0462-3657.
Parovik Roman Ivanovich – D. Sci. (Phys. & Math.), Associate Professor, Leading Researcher, Physical Process Modeling Laboratory, Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS, Paratunka village, Russia, ORCID 0000-0002-1576-1860.