Vestnik КRAUNC. Fiz.-Mat. Nauki. 2025. vol. 50. no. 1. P. 62 – 77. ISSN 2079-6641

MATHEMATICS
https://doi.org/10.26117/2079-6641-2025-50-1-62-77
Research Article
Full text in English
MSC 35B45, 35K20, 35K57, 35K59

Contents of this issue

Read Russian Version

A Diffusive Predator-Prey System with a Free Boundary

M. S. Rasulov¹²^{\ast}, Sh. M. Jamoldinova²

¹V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 100174, Tashkent, University street, 9, Uzbekistan
²National Research University “TIIAME 100000, Tashkent, K. Niyoziy str., 39, Uzbekistan

Abstract. In this paper, we consider a problem with a free boundary for a diffusive predator-prey system in the onedimensional case. Nonlinear problems with free boundary are studied using a method based on constructing a priori estimates. Therefore, first, using a method based on constructing a priori estimates, we will determine the constraints on the parameters of the problem, under which it is globally solvable. The first, fundamental estimate, gives the initial information, starting from which one can receive step by step, moving up the scale of Banach spaces. To do this, the problem is reduced to a fixed-boundary problem through a change of variables. The resulting problem has timeand space-dependent coefficients with nonlinear terms. Next, Schauder-type a priori estimates are constructed for the equation with nonlinear terms and a fixed boundary. Based on these estimates, the uniqueness of the solution to
the problem is proven. Then, the global existence of a solution to the problem was proved using the Leray-Schauder fixed point theorem.

Key words: free boundary, predator-prey, reaction-diffusion, parabolic equation, aprior bounds, existence and uniqueness.

Received: 03.04.2025; Revised: 16.04.2025; Accepted: 17.04.2025; First online: 18.04.2025

For citation. Rasulov M. S., Jamoldinova Sh. M. A diffusive predator-prey system with a free boundary. Vestnik KRAUNC. Fiz.-mat. nauki. 2025, 50: 1, 62-77. EDN: GKCHHF. https://doi.org/10.26117/2079-6641-2025-50-1-62-77.

Funding. The study was conducted without the support of foundations.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

^{\ast}Correspondence: E-mail: rasulovms@bk.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Rasulov M. S., Jamoldinova Sh. M., 2025

© Institute of Cosmophysical Research and Radio Wave Propagation, 2025 (original layout, design, compilation)

References

  1. Cantrell R. S., Cosner C. Spatial ecology via reaction-diffusion equations. Chichester, UK.: John Wiley and Sons Ltd., 2003. 411 pp. (In Russian)
  2. Jialu T., Ping L. Global dynamics of a modified Leslie-Gower predator-prey model with Beddington- De Angelis functional response and prey-taxis. J. Electronic Research Archive, 2022. vol. 30, no. 3, pp. 929-942 DOI: 10.3934/era.2022048.
  3. Pao C. V. Nonlinear parabolic and elliptic equations. New York.: Plenum Press, 1992. 777 pp.
  4. Elmurodov A. N., Rasulov M. S.On a uniqueness of solution for a reaction-diffusion type system with a free boundary. Lobachevskii Journal of Mathematics, 2022. vol. 43, no. 8, pp. 2099-2106 DOI: 10.1134/S1995080222110087.
  5. Ding N., Cai J., Xu L.A free boundary problem with nonlinear advection and Dirichlet boundary condition. Nonlinear analysis: Real world applications, 2023. vol. 69, pp. 103719 DOI:10.1016/j.nonrwa.2022.103719.
  6. Elmurodov A. N.Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection. Vestnik KRAUNC. Fiz.-Mat. Nauki, 2021. vol. 36, no. 3, pp. 110–122 DOI: 10.26117/2079-6641-2021-36-3-110-122.
  7. Rasulov M. S.Two free boundaries problem for a parabolic equation. Vestnik KRAUNC. Fiz.-Mat. Nauki, 2023. vol. 42, no. 1, pp. 108–121 DOI:10.26117/2079-6641-2023-42-1-108-121.
  8. Takhirov J. O., Rasulov M. S. Problem with free boundary for systems of equations of reaction-diffusion type. Nonlinear analysis: Real world applications, 2023. vol. 69, pp. 1968-1980 DOI:10.1007/s11253-018-1481-4.
  9. Wang R., Wang L., Wang Zhi-Ch. Free boundary problem of a reaction-diffusion equation with nonlinear convection term. Journal of Mathematical Analysis and Applications, 2018. vol. 467, no. 2, pp. 1233-1257 DOI: 10.1016/j.jmaa.2018.07.065.
  10. Lin Z. G.A free boundary problem for a predator-prey model. Nonlinearity, 2007. vol. 20, no. 8, pp. 1883-1892 DOI: 10.1088/0951-7715/20/8/004.
  11. Elmurodov A. N., Rasulov M. S.A free boundary problem for a predator-prey system. Lobachevskii Journal of Mathematics, 2023. vol. 44, no. 7, pp. 2898-2909 DOI: 10.1134/S1995080223070375.
  12. Liu Y, Guo Z, Smaily M. El, Wang L. Biological invasion in a predator-prey model with a free boundary. Boundary Value Problems, 2019. vol. 33, pp. 2898-2909 DOI: 10.1186/s13661-019-1147-7.
  13. Wang R., Wang L., Wang Zhi-Ch.A free boundary problem for the predator-prey model with double free boundaries. J.Dynam.Diff.Equations, 2017. vol. 29, no. 3, pp. 957-979 DOI: 10.1007/s10884-015-9503-5.
  14. Liu Y, Guo Z, Smaily M. El, Wang L.A Leslie-Gower predator-prey model with a free boundary. Discrete and Continuous Dynamical Systems – S, 2019. vol. 12, no. 7, pp. 2063-2083 DOI: 10.3934/dcdss.2019133.
  15. Wang M. Spreading and vanishing in the diffusive prey-predator model with a free boundary. Communications in Nonlinear Science and Numerical Simulation, 2019. vol. 23, no. 1-3, pp. 311-327 DOI: 10.1016/j.cnsns.2014.11.016.
  16. Wang M.On some free boundary problems of the prey-predator model. Journal of Differential Equations, 2014. vol. 256, no. 10, pp. 3365-3394 DOI: 110.1016/j.jde.2014.02.013.
  17. Guo J. S., Wu C. H.On a free boundary problem for a two-species weak competitor system. J. Dyn. Diff. Equat., 2012. vol. 24, no. 4, pp. 873-895 DOI: 10.1007/s10884-012-9267-0.
  18. Wang M., Zhao J. Free Boundary Problems for a Lotka-Volterra. J. Dyn. Diff. Equat., 2014. vol. 26, pp. 655–672 DOI: 10.1007/s10884-014-9363-4.
  19. Meirmanov A. M., Galtsev O. V., Galtseva O.A Some free boundary problems arising in rock mechanics. J.Math. Sci., 2022. vol. 260, pp. 492–523 DOI: 10.1007/s10958-022-05708-z.
  20. Rasulov M. S. Free boundary problem for a system of parabolic equations of the reaction-diffusion type. Izv. Vyssh. Uchebn. Zaved. Mat., 2025. no. 2, pp. 79-90 DOI:10.26907/0021-3446-2025-2-79-90.
  21. Rasulov M. S.On a Stefan problem for a reaction-diffusion equation with Dirichlet condition. Uzbek Mathematical Journal, 2024. vol. 68, no. 4, pp. 121-127 DOI: 10.29229/uzmj.2024-4-14.
  22. Takhirov J. O.A free boundary problem for a reaction-diffusion equation in biology. Indian J. Pure Appl. Math., 2019. vol. 50, no. 1, pp. 95-112 DOI: 10.1007/s13226-019-0309-8.
  23. Tan Q. J. Global existence of classical solutions for a class of diffusive ecological models with two free boundaries and cross-diffusion. Nonlinear analysis: Real world applications, 2021. vol. 60, pp. 103302 DOI: 10.1016/j.nonrwa.2021.103302.
  24. Younes G. A., Khatib N. E. Volpert V. A. Existence of Solution of a Free Boundary Problem for Reaction–Diffusion Systems. J. Math. Sci., 2024. vol. 283, pp. 150–166 DOI: 10.1007/s10958-024-07245-3.
  25. Kruzhkov S. N. Nonlinear parabolic equations in two independent variables. Tr. MMO, 1967. vol. 16, pp. 355-373 (In Russian).
  26. Friedman A. Uravneniya s chastnimi proizvodnimi parabolicheskogo tipa. Moskow.: Mir, 1968. 428 pp. (In Russian)
  27. Ladyzhenskaja O. A., Solonnikov V. A., Uralceva N. N. Lineynie i kvazilineynie uravneniya parabolicheskogo tip. Moskow.: Nauka, 1967. 736 pp. (In Russian)

Information about the authors

Rasulov Mirojiddin Sobirjonovich – Ph. D. (Phys.& Math.), Senior Researcher, V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan, ORCID 0000-0003-0704-6012.


Jamoldinova Shohista Muzaffarjon qizi – Researcher, V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan, ORCID 0009-0007-9039-9682.