Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 39. no. 2. pp. 7–19. ISSN 2079-6641
MATHEMATICS
MSC 35M12
Research Article
Boundary value problem for a mixed-type equation with a higher order elliptic operator
R. R. Ashurov¹, M. B. Murzambetova²
¹Institute of Mathematics named after V. I. Romanovskiy, Academy of Sciences of the Republic of Uzbekistan, 100174, Tashkent, University str., 9, Uzbekistan
²Nukus state pedagogical institute named after Ajiniyaz, 230100, Nukus, P. Seytov str.,104, Uzbekistan
E-mail: ashurovr@gmail.com, mehri_8282@mail.ru
In this paper, we consider a boundary value problem for a mixed-type equation with a positive,
formally self-adjoint, high order elliptic operator. The results of the work were obtained using
the Fourier method. Theorems on the existence and uniqueness of the classical solution of the
problem are proved. In this case, the positivity of elliptic operator turned out to be essential.
At the end of the paper, a mixed-type equation with a non-negative elliptic operator is considered,
and it is shown that the solution of the corresponding problem is not unique.
Key words: boundary value problem, method Fourier, elliptic operator.
DOI: 10.26117/2079-6641-2022-39-2-7-19
Original article submitted: 06.06.2022
Revision submitted: 07.07.2022
For citation. Ashurov R. R., Murzambetova M. B. Boundary value problem for a mixed-type equation with a higher order elliptic operator. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 39: 2, 7-19. DOI: 10.26117/2079-6641-2022-39-2-7-19
Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.
Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.
The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)
©Ashurov R. R., Murzambetova M. B., 2022
References
- Frankl’ F. I. On the problems of Chaplygin for mixed sub-and Supersonic flows, Izv AN SSSR. Ser. matem, 1945, vol. 9, no. 2, pp. 121–143 (In Russian).
- Frankl’ F. I. Subsonic flow about a profile with a supersonic zone terminated by a Direkt shok wave, Prikladnaya matematika i mexanika, 1958, vol. 20, no. 2, pp. 196–202(In Russian).
- Bitsadze A. V. Ill-posedness of the Dirichlet problem for equations of mixed type, Dokl. ANN SSSR, 1958, vol. 122, no. 2, pp. 167-170 (In Russian).
- Kal’menov T. Sh. The Semiperiodic Dirikhlet problem for a class of equations of mixed type, Differentsial’nie uravneniya, 1978, vol. 13, no. 3, pp. 546–548 (In Russian).
- Sabitov K. B., Dirikhlet problem for equations of mixed type in a rectangular domain, Dokl. RAN, 2007, vol. 413, no. 1, pp. 23-26 (In Russian).
- Djamalov S. Z., Ashurov R. R. A linear inverse problem for a multidimensional mixed-type second-order equation of the first kind, Russ Math, 2019, vol. 63, pp. 8-18 DOI: 10.3103/S1066369X19060021
- Sabitov K. B., Safina R. M. The first boundary value problem for an equation of mixed type with a singular coefficient, Izvestiya: Mathematics, 2018, vol. 82, no. 2:(318), pp. 318–351 http://dx.doi.org/10.1070/IM8596
- Djamalov S. Z., Ashurov R. R., Ruziev U. Sh. On a Seminonlocal boundary for a multidimensional loaded mixed type equation of the second kind, Lobachevckii Journal of Mathematics, 2021, vol. 42, no. 3, pp. 536–543 DOI: 10.1134/s1995080221030094
- Djamalov S. Z., Ashurov R. R. On a linear inverse problem for multidimensional mixed type equation of second type and second order, Differential equations, 2019, vol. 55, no. 1, pp. 34–44 DOI: 10.1134/s001226611901004X
- Murzambetova M. B. Boundary value problem for the fourth order mixed type partial differential equation with spectral parameter, UzMJ, 2013, vol. 2, pp. 60–71 (In Russian).
- Islomov B., Baltaeva U. I. Boundary value problems for a third-order loaded parabolic hyperbolic equation with variable coefficients, Electron. J. Diff. Equ., 2015, vol. 2015, no. 221, pp. 1–10. https://ejde.math.unt.edu/Volumes/2015/221/abstr.html.
- Yuldashev T. K., Islomov B. I., Alikulov E. K. Boundary value problems for a loaded parabolic-hyperbolic equatons in infinite three dimensional domains third- order, Lobachevckii Journal of Mathematics, 2020, vol. 41, no. 5, pp.
926–944. DOI: 10.1134/s1995080220050145 - Tsybikov V. N. Well-Posedness of a Periodic problem for a multidimensional equation of mixed type,(In: Nonlocal partial defferential equations) Neklassicheskie uravneniya matematicheskoy fiziki, Novosibirsk, 1985, pp. 201–205 (In Russian).
- Bitsadze A. V. On the problem for a multidimensional equation of mixed type, Dokl. AN. SSSR, 1956, vol. 110, no. 6, pp. 901–902 (In Russian).
- Bitsadze A. V. Uravnenie smeshannogo tipa [Mixed type equations], M. AN. SSSR, 1959, p. 164 (In Russian).
- Smirnov M. M. Uravneniya smeshannogo tipa [Mixed type equations], Moscow, Nauka, 1970, p. 296 (In Russian).
- Vragov V. N. Kraevie zadachi dlya neklassicheskix uravnenii matematicheskoy fiziki [Boundary value problems for a non-classical equations of mathematical physics], Novosiborsk.: NGU, 1983, p. 84(In Russian).
- Ladijenskaya O. A. Smeshannaya zadacha dlya giperbolisheskogo uravnenie [Boundary value problems for Hyperbolic equations], M. Gostexizdat, 1953, p. 281 (In Russian).
- Agmon S. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure anf Appl. Math, 1962, vol. 15, no. 2, pp. 119–143.
- Krasnosel’skii M. A., Zabreyko P. P., Pustil’nik E. I., Sobolevskiy P. S. Integral’nie operatori v prostranstvax summiruemix funktcii [Integral operators in the spaces of integral functions]. M. AN. SSSR, 1966, p. 164 (In Russian).
- Ashurov R. R., Muxitdinova A. T. Inverse problem of determimg the heat source density for the subdiffusion equation, Differential equationd, 2020, vol. 56, no. 12, pp. 1550–1563. DOI: 10.1134/S00122661200120046
- Ashurov R. R., Muxitdinova A. T. Initial-boundary value problem for hyperbolic equations with an arbitrary order elliptic operator. Vestnik KRAUNC. Fiziko-matematicheskie nauki, 2020, vol. 30, no. 1, pp. 8–19. DOI: 10.26117/2079-6641-2020-30-1-8-19 (In Russian).
- Alimov Sh. A. Fractional powers of elliptic operators and isomorphism of classes of differentiable functions, Differentsial’nie uravneniya, 1972, vol. 8, no. 9, pp. 1609–1626 (In Russian).
- Alimov Sh. A., Ashurov R. R., Pulatov A. K. Kratnie ryadi i integrali Fur’e [Multiple series and Fourier integrals], Itogi nauki i texn. Ser. Sovr. Problemi matematiki. Fund. napravleniya, 1989, vol. 42, pp. 7–104 (In Russian).
- Sobolevskiy P. E. About functions of Green of any (in particular, integer) powers of elliptic operators, Dokl. AN SSSR, 1962, vol. 142, no. 4, pp. 804–807 (In Russian).
- Il’in V. A. On the solvability of power problems for the Hiperbolic and parabolic equations, Uspexi mat. Nauk, 1960, vol. 15, no. 2, pp. 97–154 (In Russian).
Ashurov Ravshan Radjabovich – D. Sci. (Phys. & Math.), Professor, Head of Laboratory of Differential equations and their applications, Institute of Mathematics, Academy of sciences of Uzbekistan, Tashkent, Uzbekistan, ORCID 0000-0001-5130-466X.
Murzambetova Mexriban Begdullaevna – Teacher of the Faculty of Physics and Mathematics of the Nukus State pedagogical Institute named after Ajiniyaz, Nukus, Uzbekistan, ORCID 0000-0001-6704-0785.