Vestnik КRAUNC. Fiz.-Mat. nauki. 2024. vol. 46. no. 1. P. 134-164. ISSN 2079-6641

PHYSICS
https://doi.org/10.26117/2079-6641-2024-46-1-134-164
Research Article
Full text in Russian
MSC 86А25

Contents of this issue

Read Russian Version

Short Temporal Variations of Electrotelluric Field in the Vicinity of the Earthquake Source-Site in the Sakhalin Island

A. S. Zakupin^\ast, I. P. Dudchenko, L. M. Bogomolov, S. A. Gulyakov, A. I. Kazakov, N. S. Stovbun

Institute of Marine Geology and Geophysics, FEB RAS, 693022, Yuzhno-Sakhalinsk, Nauki str., 1B, Russia

Abstract. The work represents the results of analysis of electro-telluric potentials data obtained at the Yuzhno-Sakhalinsk test site (deployed in June 2023on the territory of the IMGG FEB RAS). Unexpectedly, a new kind of signals – series of quasiperiodic spikes (pulses) in night times were found in first few months after start of recording. Signals of 4-5 s length and of 130-150 s repetition period have a various waveform, which is derived from some primary quasi-sinusoidal signal. Such series were recorded from July 20 to September 11, 2023, and their average duration was nearly 8-9 hours. No episodes were found after September 12, up to December 20. The maximal intensity of the signals and the series as a whole was revealed in the period from 5 to 10 August. During this period the moderate earthquake M=3.8 occurred on 9 August, 2003 in the vicinity of measurement point (within a circular zone of 0.25 degrees radius around the test site) It was the strongest event from pair of that occurred in the given zone, the magnitudes were being M = 3.8 (08/09/2023) and M = 3.1 (09/19/2023). No similar series were observed before the second earthquake, being the weaker. Origination of quasiperiodic pulses series could be related to the preparedness of earthquake source – site. However extra surveys are required to proof this hypothesis.

Key words: series of electrical signals, precursor, telluric field, earthquake, distorted signal.

Received: 15.02.2023; Revised: 26.02.2024; Accepted: 27.02.2024; First online: 07.03.2024

For citation. Zakupin A. S., Dudchenko I.P., Bogomolov L. M. et al. Short temporal variations of electrotelluric field in the vicinity of the earthquake source-site in the Sakhalin island. Vestnik KRAUNC. Fiz.-mat. nauki. 2024, 46: 1, 134-164. EDN: FIGWJO. https://doi.org/10.26117/2079-6641-2024-46-1-134-164.

Funding. The work was not carried out within the framework of funds.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

^\astCorrespondence: E-mail: dikii79@mail.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Zakupin A. S., Dudchenko I.P., Bogomolov L. M. et al., 2024

© Institute of Cosmophysical Research and Radio Wave Propagation, 2024 (original layout, design, compilation)

References

  1. Milne J. Earthquakes in connection with electric and magnetic phenomena, Trans. Seismol. Soc. Japan, 1890, vol. 15, pp. 135-163.
  2. Dovbnya B. V. On the results of remote monitoring of pulsed ultra-low-frequency electromagnetic signals detected minutes before an earthquake, Zhizn’ Zemli, 2021, vol. 43, no. 3, pp. 304–313. DOI: 10.29003/m2435.0514-7468.2020_43_3/304-313 (In Russian).
  3. Wang C., Christman L., Klemperer S., Glen J., McPhee D., Chen B. Assessment of a claimed ultra-low frequency electromagnetic (ULFEM) earthquake precursor, Geophys. J. Int., 2022, vol. 229, no 3, pp. 2081-2095. DOI: 10.1093/gji/ggab530.
  4. Sadovsky M. A. Elektromagnitnyye predvestniki zemletryaseniy [Electromagnetic precursors of earthquakes]. Moscow, Nauka, 1982, 88 pp. (In Russian).
  5. Zubkov S.I. Predvestniki zemletryaseniy [Precursors of earthquakes]. Moscow, IFZ RAN, 2002, 140 pp. (In Russian).
  6. Fujinawa Y., Noda Y. Progress of Applied Seismo-Electromagnetism, Open J. Earthq. Res., 2020, vol. 9, no. 1, pp. 1-18. DOI: 10.4236/ojer.2020.91001.
  7. Kosobokov V. G. Prognoz zemletryaseniy: osnovy, realizatsiya, perspektivy [Earthquake forecast: fundamentals, implementation, prospects]. Moscow, GEOS, 2005, 179 pp. (In Russian).
  8. Parovyshny V. A., Sokhatyuk Yu. V., Parovyshny D. V., Veselov O. V., Kochergin E. V. About approaches to solving some problems of operational forecast of seismic events, Geosistemy perekhodnykh zon, 2019, vol. 3, no. 1, pp. 5-18. DOI: 10.30730/2541- 8912.2019.3.1.005-018 (In Russian).
  9. Parovyshny V. A., Bogomolov L. M., Sokhatyuk Yu. V., Parovyshny D. V. Problems of operational forecast of seismic events. Proposed solutions, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2021, vol. 35, no. 2, pp. 120-132. DOI: 10.26117/2079-6641-2021-35-2-120-132 (In Russian).
  10. Grib N. N., Grib G. V., Kolodeznikov I. I. On the short-term forecast of earthquakes using geophysical precursors in South Yakutia, Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal, 2021, no. 9-1 (111), pp. 121-127.DOI: 10.23670/IRJ.2021.9.111.020 (In Russian).
  11. Grib N. N., Trofimenko S. V. Registration of electromagnetic radiation (EMR) during earthquakes, Gornyy informatsionno-analiticheskiy byulleten’, 2006, no. S10, pp. 197-207. (In Russian).
  12. Dovbnya B. V., Pashinin A. Yu., Rakhmatulin R. A. Short-term electromagnetic precursors nicks of earthquakes, Geodinamika i tektonofizika, 2019, vol. 10, no. 3, pp. 731-740. DOI: 10.5800/GT-2019-10-3-0438 (In Russian).
  13. Han P., Hattori K., Zhuang J., Chen C.-H., Liu J.-Y., Yoshida S. Evaluation of ULF seismomagnetic phenomena in Kakioka, Japan by using Molchan’s error diagram, Geophys. J. Int., 2017, vol. 208, no. 1, pp. 482–490. DOI: 10.1093/gji/ggw404.
  14. Bleier T., Dunson C., Maniscalco M., Bryant N., Bambery R., Freund F. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst., 2009, vol. 9, no. 2, pp. 585–603. DOI: 10.5194/nhess-9-585-2009.
  15. Bleier T., Dunson C., Alvarez C., Freund F., Dahlgren R. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments, Nat. Hazards Earth Syst., 2010, vol. 10, no. 9, pp. 1965–1975. DOI: 10.5194/nhess-10-1965-2010.
  16. Zhamaletdinov A. A., Mitrofanov F. P., Tokarev A. D., Shevtsov A. N. Influence of lunardiurnal tidal deformations on electrical conductivity and fluid regime of the earth’s crust, Dokl. Akad. Nauk, 2000, vol. 37, no. 2, pp. 235–239. (In Russian).
  17. Avagimov A. A., Zeigarnik V. A., Fainberg E. B. On the spatiotemporal structure of seismicity caused by electromagnetic influence, Fiz. Zemli, 2005, no. 6, pp. 55–65. (In Russian).
  18. Aleksandrov P. N., Modin I. N. On a systematic approach to the analysis of electrometric data monitoring, Inzhenernyye izyskaniya, 2015, no. 3, pp. 42-50. (In Russian).
  19. Moroz Yu. F., Gontovaya L. I. On the deep structure of Southern Kamchatka according to geophysical data, Geodinamika i tektonofizika, 2018, vol. 9, no. 4, pp. 1147-1161. DOI: 10.5800/GT-2018-9-4-0387 (In Russian).
  20. Nevedrova N. N., Ponomarev P. V. Results of long-term monitoring of electrophysical parameters in the seismically active zone of the Altai Mountains using direct current methods, Interekspo Geo-Sibir’, 2018, vol. 3, pp. 281-287. DOI: 10.18303/2618-981X-2018-3-281-287 (In Russian).
  21. Sobolev G. A., Morozov V. N., Migunov N. I. Electrotelluric field and strong earthquake in Kamchatka, Izv. AN SSSR. Ser. Fizika Zemli, 1972, no. 2, pp. 67-73. (In Russian).
  22. Vorobyov A. A., Samokhvalov M. A., Gorelkin A. F., Ibragimov R. N., Usmanova M. T., Khodzhaev A. N. Anomalous changes in the intensity of the natural electromagnetic field in the area Tashkent before earthquakes, Uzbek. geol. zhurnal, 1976, no. 2, pp. 9-11. (In Russian).
  23. Moroz Yu. F., Bakhtiarov V. F., Voropaev V. F., Gavrilov V. A., Levin V. E., Popruzhenko S. V. On monitoring the electrotelluric field for forecasting strong earthquakes in Kamchatka, Vulkanologiya i seysmologiya, 1995, no. 4-5, pp. 139-149. (In Russian).
  24. Sobolev G. Application of electric method to the tentative short-term forecast of Kamchatka earthquakes, Pure Appl. Geophys., 1975, vol. 113, no. 1, pp. 229-235. DOI: 10.1007/BF01592913.
  25. Noritomi K. Geoelectric and geomagnetic observations and phenomena associated with earthquake in China. In: Chinese earthquake prediction by the 1977 delegation of the Seismological Society of Japan. Tokyo (Japan), Seismological Society of Japan, 1978, pp. 57–87.
  26. Varotsos P., Alexopoulos K. Physical properties of the variations of the electric field of the earth preceding earthquakes, I, Tectonophysics, 1984, vol. 110, no. 1-2, pp. 73-98. DOI: 10.1016/0040-1951(84)90059-3.
  27. Varotsos P., Alexopoulos K., Lazaridou M. Short term earthquake prediction from measurements of the electric field of the earth. In: Risque, nature et societe: Actes du seminaire «Delphes I» [en ligne]. Paris (France),Editions de la Sorbonne, 1996, pp. 139–154. DOI: 10.4000/books.psorbonne.32076.
  28. Nagao T., Orihara Y., Yamaguchi T., Takahashi I., Hattori K., Noda Y., Sayanagi K., Uyeda S. Co-seismic geoelectric potential changes observed in Japan, Geophys. Res. Lett., 2000, vol. 27, no. 10, pp. 1535-1538. DOI: 10.1029/1999GL005440.
  29. Sarlis N., Skordas E. Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series. Heidelberg (Germany), Springer Berlin, 2011, 484 pp. DOI: 10.1007/978-3-642-16449-1.
  30. Uyeda S., Kamogawa M. The Prediction of Two Large Earthquakes in Greece, Eos, 2008, vol. 89, no. 39, pp. 363. DOI: 10.1029/2008EO390002.
  31. Geller R. Debate on evaluation of the VAN Method: Editor’s introduction, Geophys. Res. Lett., 1996, vol. 23, no. 11, pp. 1291-1293. DOI: 10.1029/96gl00742.
  32. Geller R. Earthquake prediction: critical review, Geophys. J. Int., 1997, vol. 131, no. 3, pp. 425-450. DOI: 10.1111/j.1365-246x.1997.tb06588.x.
  33. Papadopoulos G. Comment on “The Prediction of Two Large Earthquakes in Greece”, Eos, 2010, vol. 91, no. 18, pp. 162. DOI: 10.1029/2010EO180003.
  34. Zakupin A. S., Levin Yu. N., Boginskaya N. V., Zherdeva O. A. Development of mediumterm methods forecast using the example of the Onor earthquake on Sakhalin (Mw=5.8, August 14, 2016 year), Geologiya i geofizika, 2018, no. 11, pp. 1904-1911. DOI: 10.15372/GiG20181112. (In Russian).
  35. Zakupin A. S., Bogomolov L. M., Boginskaya N. V. Application of seismic analysis methods LURR and SRP sequences for predicting earthquakes on Sakhalin, Geofizicheskiye protsessy i biosfera, 2020, vol. 19, no. 1, pp. 66-78. DOI: 10.21455/GPB2020.1-4. (In Russian).
  36. Rulenko O.P. Operational precursors of earthquakes in the electricity of the surface atmosphere, Vulkanologiya i seysmologiya, 2000, no. 4, pp. 57-68. (In Russian).
  37. Marapulets Yu. V., Rulenko O. P., Larionov I. A., Mishchenko M. A. Simultaneous response of high-frequency geoacoustic emission and atmospheric electric field to deformation of near-surface sedimentary rocks, Dokl. Akad. Nauk, 2011, vol. 440, no. 3, pp. 403–406. (In Russian).
  38. Morgunov V. A., Matveev I. V. Electrical and electromagnetic effects in the epicentral aftershock zone of the Spitak earthquake, Izv. AN SSSR. Ser. Fizika Zemli, 1991, no. 11, pp. 124. (In Russian).
  39. Beloslyudtsev O. M., Uzbekov N. B. On a systematic approach to the analysis of electrometric data monitoring, Ural’skiy geofizicheskiy vestnik, 2006, no. 1 (9), pp. 5-8 (In Russian).
  40. Guglielmi A. V., Levshenko V. T. Electromagnetic pulse from the earthquake source, Dokl. Akad. Nauk, 1996, vol. 349, no. 5, pp. 676-678. (In Russian).
  41. Sobisevich L., Kanonidi K., Sobisevich A. Observations of ultra-low-frequency geomagnetic disturbances reflecting the processes of the preparation and development of tsunamigenic earthquakes, Dokl. Earth Sci., 2010, vol. 435, no. 2, pp. 1627-1632.
  42. Rozhnoi A., Solovieva M., Molchanov O., Chebrov V., Voropaev V., Hayakawa M., Maekawa S., Biagi P.-F. Preseismic anomaly of LF signal on the wave path Japan-Kamchatka during November–December 2004, Phys. Chem. Earth, 2006, vol. 31, no. 4-9, pp. 422-427. DOI: 10.1016/j.pce.2006.02.033.
  43. Rozhnoi A., Solovieva M., Molchanov O., Schwingenschuh K., Boudjada M., Biagi P.-F., Maggipinto T., Castellana L., Ermini A., Hayakawa M. Anomalies in VLF radio signals prior to the Abruzzo earthquake (M = 6.3) on 6 April 2009, Nat. Hazards Earth Syst., 2009, vol. 9, no. 5, pp. 1727-1732. DOI: 10.5194/nhess-9-1727-2009.
  44. Gokhberg M. B., Gufeld I. L., Gershenzon N. I., Pilipenko V. A. Electromagnetic effects during the destruction of the earth’s crust, Izv. AN SSSR. Ser. Fizika Zemli, 1985, no. 1, pp. 72-87. (In Russian).
  45. Gokhberg M. B., Morgunov V. A., Pokhotelov O. A. Seysmoelektromagnitnyye yavleniya [Seismoelectromagnetic phenomena]. Moscow, Nauka, 1988, 174 pp. (In Russian).
  46. Molchanov O. Generation of ULF electromagnetic emissions by microfracturing, Geophys. Res. Lett., 1995, vol. 22, no. 22, pp. 3091-3094. DOI: 10.1029/95GL00781.
  47. Surkov V. V. Elektromagnitnyye effekty pri zemletryaseniyakh i vzryvakh: Nauchnoye izdaniye [Electromagnetic effects during earthquakes and explosions: Scientific publication]. Moscow, MIFI, 2000, 448 pp. (In Russian).
  48. Nitsan U. Electromagnetic emission accompanying fracture of quartz-bearing rocks, Geophys. Res. Lett., 1977, vol. 4, no. 8, pp. 333-336. DOI: 10.1029/GL004i008p00333.
  49. Miroshnichenko M. I., Kuksenko V. S. Radiation of pulses during the initiation of cracks in solids dielectrics, FTT, 1980, vol. 22, no. 5, pp. 1531-1533. (In Russian).
  50. Vorobyov A. A., Zashchinsky L. A., Nadezhkin S. G., Shiryaev V. F. Pulse electromagnetic field that arises during soil deformation in laboratory conditions, FTPRPI, 1981, no. 5, pp. 119-120. (In Russian).
  51. Kurlenya M. V., Vostretsov A. G., Kulakov G. I., Yakovitskaya G. E. Registratsiya i obrabotka signalov elektromagnitnogo izlucheniya gornykh porod [Registration and processing signals of electromagnetic radiation from rocks]. Novosibirsk, Izdatel’stvo SO RAN, 2000, 232 pp. (In Russian).
  52. Frid V., Rabinovitch A., Bahat D. Fracture induced electromagnetic radiation, J. Phys. D-Appl. Phys., 2003, vol. 36, no. 13, pp. 1620-1628. DOI: 10.1088/0022-3727/36/13/330.
  53. Bespalko A. A., Kuzminykh R. A., Lyukshin B. A., Utsyn G. E., Yavorovich L. V. Experimental and theoretical study of electromagnetic emission in inhomogeneous dielectric materials, Izv. VUZov. Fizika, 2007, no. 2, pp. 16-22. (In Russian).
  54. Yakovitskaya G. E. Metody i tekhnicheskiye sredstva diagnostiki kriticheskikh sostoyaniy gornykh porod na osnove elektromagnitnoy emissii [Methods and technical means for diagnosing critical conditions rocks based on electromagnetic emission]. Novosibirsk, Parallel’, 2008, 314 pp. (In Russian).
  55. Mori Y., Obata Y., Sikula J. Acoustic and electromagnetic emission from crack created in rock samples under deformation, Journal of Acoustic Emission, 2009, vol. 27, pp. 157-166. URL: https://www.researchgate.net/publication/266606255_Acoustic_and_electromagnetic…
  56. Bulgakov R. F., Ivashchenko A. I., Kim C. U., Sergeev K. F., Streltsov M. I., Kozhurin A. I., Besstrashnoye V. M., Strom A. L., Suzuki Ya ., Tsutsumi H., Watanabe M., Ueki T., Shimamoto T., Okumura K., Goto H., Kariya Y. Active faults of North-Eastern Sakhalin, Geotektonika, 2002, no. 2, pp. 66-86. URL: http://neotec.ginras.ru/comset/_bulgakov-r-fi-dr-2002-aktivnye-razlomy-severo-vostochnogo-sahalina.pdf (In Russian).
  57. Ivanov A. G. Seismoelectric effect of the second kind, Izv. AN SSSR. Ser. geografiya i geofizika, 1940, no. 5, pp. 699–727. (In Russian).
  58. Svetov B. S. Towards a theoretical justification of the seismoelectric method of geophysical
    exploration, Geofizika, 2000, no. 1, pp. 28-39. (In Russian).
  59. Lazaridou-Varotsos M. Earthquake Prediction by Seismic Electric Signals. Heidelberg (Germany), Springer Berlin, 2013, 254 pp. DOI: 10.1007/978-3-642-24406-3.
  60. Sarlis N. V. Statistical significance of earth’s electric and magnetic field variations preceding earthquakes in Greece and Japan revisited, Entropy, 2018, vol. 20, no. 8, pp. 561–578. DOI: 10.3390/e20080561.

Information about authors

Zakupin Alexander Sergeevich – Ph. D. (Phys. & Math.), Leading Researcher at the Seismology Laboratory, Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0000-0003-0593-6417.


Dudchenko Ilya Pavlovich – Ph. D. (Tech.), Head of the Department for Research of Geophysical Fields and Physical Properties of Geomaterials at the Center for Collective Use, Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0000-0002-4967-7405.


Bogomolov Leonid Mikhailovich – Dr. Sci. (Phys. & Math.), Chief Researcher, Director, Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0000-0002-9124-9797.


Gulyakov Sergey Aleksandrovich – Junior Researcher at the Department for Research of Geophysical Fields and Physical Properties of Geomaterials at the Center for Collective Use, Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0009-0001-7924-6972.


Kazakov Artem Ivanovich – Leading Engineer at the Department for Research of Geophysical Fields and Physical Properties of Geomaterials at the Center for Collective Use, Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0000-0002-1378-185X.


Stovbun Nikolay Sergeevich – Junior Researcher at the Department for Research of Geophysical Fields and Physical Properties of Geomaterials at the Center for Collective Use, Institute of Marine
Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia, ORCID 0009-0004-1927-798X.