Vestnik КRAUNC. Fiz.-Mat. nauki. 2024. vol. 46. no. 1. P. 103-117. ISSN 2079-6641

INFORMATION AND COMPUTATION TECHNOLOGIES
https://doi.org/10.26117/2079-6641-2024-46-1-103-117
Research Article
Full text in Russian
MSC 34A08, 65Y05, 65M06

Contents of this issue

Read Russian Version

Application of High-Performance Computing to Solve the Cauchy problem with the Fractional Riccati Equation Using an Nonlocal Implicit Finite-Difference Scheme

D. A. Tverdyi, R. I. Parovik^\ast

Institute for Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034, Paratunka, Mirnaya st., 7, Russia

Abstract. The article presents a study of the computational efficiency of a parallel version of a numerical algorithm for solving the Riccati equation with a fractional variable order derivative of the Gerasimov-Caputo type. The numerical algorithm is a nonlocal implicit finite-difference scheme, which reduces to a system of nonlinear algebraic equations and is solved using a modified Newton method. The nonlocality of the numerical scheme creates a high computational load on computing resources, which creates the need to implement efficient parallel algorithms for solving them. The numerical algorithm studied for efficiency is implemented in the C language due to its versatility when working with memory. Parallelization was carried out using OpenMP technology. A series of computational experiments are being carried out on the NVIDIA DGX STATION computing server (Institute of Mathematics named after V.I. Romanovsky, Tashkent, Uzbekistan) and the HP Pavilion Gaming Laptop Z270X, where the Cauchy problem for the fractional Riccati equation with non-constant coefficients was solved. Based on the average computation time, the speedup, efficiency and cost of the algorithm are calculated. From the data analysis it is clear that the OpenMP parallel software implementation of the non-local implicit finite-difference scheme shows an acceleration of 9-12 times, depending on the number of CPU cores involved.

Keywords: parallel computing, OpenMP, implicit finite difference schemes, Newton’s method, fractional
derivatives, memory effect, non-locality, non-linearity

Received: 18.01.2024; Revised: 18.02.2024; Accepted: 07.03.2024; First online: 07.03.2024

For citation. Tverdyi D. A., Parovik R. I. Application of high-performance computing to solve the Cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme. Vestnik KRAUNC. Fiz.-mat. nauki. 2024, 46: 1, 103-117. EDN: GNJWJM. https://doi.org/10.26117/2079-6641-2024-46-1-103-117.

Funding. The research was carried out within the framework of the RSF grant № 22-11-00064 on the topic “Modelling of dynamic processes in geospheres taking into account heredity”(https://rscf.ru/project/22-11-00064/).

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

^\astCorrespondence: E-mail: romanparovik@gmail.com

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Tverdyi D. A., Parovik R. I., 2024

© Institute of Cosmophysical Research and Radio Wave Propagation, 2024 (original layout, design, compilation)

References

  1. Uchaikin V. V. Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. Berlin, Springer, 2013, 373 pp., isbn: 978-3-642-33911-0. DOI: 10.1007/978-3-642-33911-0.
  2. Nahushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow, Fizmatlit, 2003, 272 pp., isbn: 5-9221-0440-3 (In Russian)
  3. Parovik R. I. Mathematical models of oscillators with memory, Oscillators-Recent Developments, 2019, pp. 3–21. DOI: 10.5772/intechopen.81858.
  4. Volterra V. Sur les ´equations int´egro-diff´erentielles et leurs applications, Acta Mathematica, 1912, vol. 35, no. 1, pp. 295–356. DOI: 10.1007/BF02418820.
  5. Patnaik S., Hollkamp J.P., Semperlotti F. Applications of variable-order fractional operators: a review, Proceedings of the Royal Society A, 2020, vol. 476, no. 2234, pp. 20190498. DOI: 10.1098/rspa.2019.0498.
  6. Ortigueira M. D., Valerio D., Machado J. T. Variable order fractional systems, Communications in Nonlinear Science and Numerical Simulation, 2019, vol. 71, pp. 231–243. DOI: 10.1016/j.cnsns.2018.12.003.
  7. Petras I. Fractional-order nonlinear systems: modeling, analysis and simulation. Berlin, Germany, Beijing and Springer-Verlag, 2011, 218 pp., isbn: 9783642181009.
  8. Sun H., Chang A., Zhang Y., Chen W. A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fractional Calculus and Applied Analysis, 2019, vol. 22, no. 1, pp. 27–59. DOI: 10.1515/fca-2019-0003.
  9. Rossikhin Y. A., Shitikova M. V., Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Applied Mechanics Reviews, 2010, vol. 63, no. 1, pp. 1–5. DOI: 10.1115/1.4000563.
  10. Mainardi F. Fractional Calculus and Waves in Linear Viscoelastisity: An Introduction to Mathematical Models. 2nd edition. Singapore, World Scientific Publishing Company, 2022, 625 pp., isbn: 1783263989. DOI: 10.1142/p926.
  11. Tverdyi D. A., Parovik R. I. Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation, Fractal and Fractional, 2022, vol. 6, no. 1:23, pp. 1–27. DOI: 10.3390/fractalfract6010023.
  12. Volterra V. Theory of functionals and of integral and integro-differential equations: [Unabridged republication of the first English translation]. New York, Dover publications, 1959, 226 pp.
  13. Tverdyi D. A., Parovik R. I., Hayotov A. R., Boltaev A. K. Parallelization of a Numerical Algorithm for Solving the Cauchy Problem for a Nonlinear Differential Equation of Fractional Variable Order Using OpenMP Technology, Bulletin KRASEC. Physical and Mathematical Sciences, 2023, vol. 43, no. 2, pp. 87–110. DOI: 10.26117/2079-6641-2023-43-2-87-11.
  14. Tverdyi D. A., Parovik R. I. Hybrid GPU-CPU efficient implementation of a parallel numerical algorithm for solving the Cauchy problem for a nonlinear differential Riccati equation of fractional variable order, Mathematics, 2023, vol. 11, no. 15:3358, pp. 1–21. DOI: 10.3390/math11153358.
  15. Borzunov S. V., Kurgalin S. D., Flegel A. V. Praktikum po parallel’nomu programmirovaniyu: uchebnoe posobie [Workshop on Parallel Programming: A Study Guide]. Saint Petersburg: BVH, 2017, 236 pp., isbn: 978-5-9909805-0-1 (In Russian)
  16. Kalitkin N. N. Chislennye metody. 2-e izd. [Numerical methods. 2nd ed.]. Saint Petersburg: BVH, 2011, 592 pp., isbn: 978-5-9775-0500-0 (In Russian)
  17. Samko S. G., Kilbas A. A., Marichev O. I. Integraly i proizvodnye drobnogo poryadka i nekotorye ih prilozheniya [Fractional integrals and derivatives and some of their applications]. Science and tech: Minsk, 1987, 688 pp.,(In Russian)
  18. Parovik R. I. Tverdyi D. A. Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation, Mathematical and Computational Applications, 2021, vol. 26, no. 3, pp. 55. DOI: 10.3390/mca26030055.
  19. Tverdyi D. A., Parovik R. I. Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect, Fractal and Fractional, 2022, vol. 6, no. 3:163, pp. 1–35. DOI: 10.3390/fractalfract6030163.
  20. Parovik R. I. On a Finite-Difference Scheme for an Hereditary Oscillatory Equation. Journal of Mathematical Sciences. 2021. vol. 253. no. 4. p. 547-557 https://doi.org/10.1007/s10958-021-05252-2DOI:10.1007/s10958-021-05252-2.
  21. Gerasimov A. N. Generalization of linear deformation laws and their application to internal friction problems. Applied Mathematics and Mechanics. 1948. vol 12. pp. 529–539 (In Russian)
  22. Caputo M. Linear models of dissipation whose Q is almost frequency independent – II, Geophysical Journal International, 1946, vol. 13, no. 5, pp. 529–539. DOI: 10.1111/j.1365-246X.1967.tb02303.x3.
  23. Jeng S., Kilicman A. Fractional Riccati Equation and Its Applications to Rough Heston Model Using Numerical Methods, Symmetry, 2020, vol. 12, pp. 1–20. DOI: 10.3390/sym12060959.
  24. Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P.P. Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance, E3S Web Conference, 2020, vol. 196, no. 02027, pp. 1–6. DOI: 10.1051/e3sconf/2020196020278.
  25. Tverdyi D. A., Makarov E. O., Parovik R. I. Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber, Mathematics, 2023, vol. 11, no. 4:850, pp. 1–20. DOI: 10.3390/math11040850.
  26. Brent R.P. The parallel evaluation of general arithmetic expressions, Journal of the Association for Computing Machinery, 1974, vol. 21, no. 2, pp. 201–206. DOI: 10.1145/321812.321815.
  27. Corman T. H., Leiserson C. E., Rivet R. L., Stein C. Introduction to Algorithms, 3rd Edition. Cambridge, The MIT Press, 2009, 1292 pp., isbn: 978-0262033848.
  28. Shao J. Mathematical Statistics. 2-ed. New York, Springer, 2003, 592 pp., isbn: 978-0-387-95382-3.

Tverdyi Dmitrii Alexsandrovich – Ph. D. (Phys. & Math.), Researcher, Laboratory of Electromagnetic Radiation, Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS, Paratunka, Russia,
ORCID 0000-0001-6983-5258.


Parovik Roman Ivanovich – D. Sci. (Phys. & Math.), Associate Professor, Leading Researcher at the Laboratory for Modeling Physical Processes, Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS, Paratunka, Russia, ORCID 0000-0002-1576-1860.