Vestnik КRAUNC. Fiz.-Mat. nauki. 2023. vol. 44. no. 3. P. 67-85. ISSN 2079-6641


Research Article

Full text in Russian

MSC 34A08, 34A34

Contents of this issue

Read Russian Version

Implementation of the Modified Test 0-1 Algorithm for the Analysis of Chaotic Modes of the Fractional Duffing Oscillator

R. I. Parovik¹²^\ast

¹Vitus Bering Kamchatka State University, Petropavlovsk-Kamchatsky, st. Pogranichnaya, 4, Russia
²National University of Uzbekistan named after Mirzo Ulugbek, 100174, Tashkent, st. Universitetskaya, 4, Uzbekistan

Abstract. The work carried out a study of chaotic and regular modes of a fractional Duffing oscillator using the Test 0-1 algorithm. The fractional Duffing oscillator is described by a nonlinear differential equation with the Riemann-Liouville derivative of a fractional variable order. Using an explicit numerical finitedifference scheme, a numerical solution to the model was obtained, which is fed to the input of the Test 0-1 algorithm after the thinning procedure – identifying local extrema. Next, using the Matlab package, the Test 0-1 algorithm is implemented and the simulation results are visualized. Bifurcation diagrams are constructed for the correlation coefficient, taking into account the values of the orders of the fractional derivative, and oscillograms and phase trajectories are constructed. It is shown that the Test 0-1 algorithm works correctly with the appropriate selection of the sampling step.

Key words: Test 0-1, model, Duffing oscillator, Riemann-Liouville fractional derivative, standard deviation, correlation, bifurcation diagram

Received: 01.09.2023; Revised: 01.10.2023; Accepted: 05.10.2023; First online: 02.11.2023

For citation. Parovik R. I. Implementation of the modified Test 0-1 algorithm for the analysis of chaotic modes of the fractional Duffing oscillator. Vestnik KRAUNC. Fiz.-mat. nauki. 2023, 44: 3, 67-85. EDN: AREVER.

Funding. The research was carried out within the framework of the grant of the President of the Russian Federation MD-758.2022.1.1 on the topic “Development of mathematical models of fractional dynamics in order to study oscillatory processes and processes with saturation”

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing
the final version of the article in print. The final version of the manuscript was approved by all authors.

^\astCorrespondence: E-mail:

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Parovik R. I., 2023

© Institute of Cosmophysical Research and Radio Wave Propagation, 2023 (original layout, design, compilation)


  1. Lichtenberg A. J., Lieberman M. A. Regular and chaotic dynamics. vol. 38. New York: Springer Science & Business Media. 2013. 692 p.DOI:10.1007/978-1-4757-2184-3
  2. Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Springer, 2011. 218 p. DOI:10.1007/978-3-642-18101-6
  3. Volterra V. Functional theory, integral and integro-differential equations. New York: Dover Publications, 2005, 288 p.
  4. Gottwald G. A., Melbourne I. Testing for chaos in deterministic systems with noise. Physica D: Nonlinear Phenomena. 2005. vol. 212, no. 1-2. 100-110. DOI:10.1016/j.physd.2005.09.011
  5. Hu J., Tung W. W., Gao J., Cao Y. Reliability of the 0-1 test for chaos. 2005. Physical Review E. vol. 72. no. 5. 056207. DOI:10.1103/PhysRevE.72.056207
  6. Falconer I., Gottwald G. A., Melbourne I., Wormnes K. Application of the 0-1 test for chaos to experimental data. SIAM Journal on Applied Dynamical Systems. 2007. vol. 6. no. 2. 395-402. DOI:10.1137/060672571
  7. Gottwald G. A., Melbourne I. On the implementation of the 0–1 test for chaos. SIAM Journal on Applied Dynamical Systems. 2009. vol. 8. no. 1. 129-145. DOI:10.1137/080718851
  8. Gottwald G. A., Melbourne I. The 0-1 test for chaos: A review. Chaos detection and predictability. 2016. 221-247. DOI:10.1007/s40430-015-0453-y
  9. Marszalek W., Walczak M., Sadecki J. Testing deterministic chaos: Incorrect results of the 0–1 test and how to avoid them. IEEE Access. 2019. vol. 7. 183245-183251. DOI:10.1109/ACCESS.2019.2960378
  10. Walczak M., Marszalek W., Sadecki J. Using the 0-1 test for chaos in nonlinear continuous systems with two varying parameters: Parallel computations. IEEE Access. 2019. vol. 7. 154375-154385. DOI:10.1109/ACCESS.2019.2948989
  11. Ouannas A., Khennaoui A. A., Momani S., Grassi G., Pham V. T., El-Khazali, R., Vo Hoang D. A quadratic fractional map without equilibria: Bifurcation, 0–1 test, complexity, entropy, and control. Electronics. 2020. vol. 9. no. 5. 748. DOI:10.3390/electronics9050748
  12. Fouda J. S. A. E., Bodo B., Sabat S. L., Effa J. Y. A modified 0-1 test for chaos detection in oversampled time series observations. International Journal of Bifurcation and Chaos. 2014. vol. 24. no. 5. 1450063. DOI:10.1142/S0218127414500631
  13. Wontchui T. T., Effa J. Y., Fouda H. P. E., Fouda, J. S. A. E. Dynamical behavior of PeterDe-Jong map using the modified (0-1) and 3ST tests for chaos. Annual Review of Chaos Theory. Bifurcations and Dynamical Systems. 2017. vol 7. 1-21.
  14. Kim V., Parovik R. Mathematical model of fractional Duffing oscillator with variable memory. Mathematics. 2020. vol. 8 no. 11, DOI:10.3390/math8112063
  15. Kim V., Parovik R. Application of the Explicit Euler Method for Numerical Analysis of a Nonlinear Fractional Oscillation Equation. Fractal and Fractional. 2022. vol. 6. no. 5, DOI:10.3390/fractalfract6050274
  16. Kim V., Parovik R. Some aspects of the numerical analysis of a fractional duffing oscillator with a fractional variable order derivative of the Riemann-Liouville type. AIP Conference Proceedings. 2022. vol. 2467. DOI:10.1063/5.0092344
  17. Kim V., Parovik R. Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type. Mathematics. 2023. vol. 11, no. 3.DOI:10.3390/math11030558
  18. Kovacic I., Brennan M. J. The Duffing equation: nonlinear oscillators and their behaviour. New York: John Wiley & Sons, 2011, 623 p.
  19. Coimbra C. F. M. Mechanics with variable-order differential operators. Annalen der Physik. 2003. vol. 12. no. 11–12. 692–703.DOI:10.1002/andp.200310032
  20. Ortigueira M. D., Valerio D., Machado J. T. Variable order fractional systems. Communications in Nonlinear Science and Numerical Simulation. 2019. vol. 71. 231–243. DOI:10.1016/j.cnsns.2018.12.003
  21. Patnaik S., Hollkamp J. P., Semperlotti F. Applications of variable-order fractional operators: a review. Proceedings of the Royal Society A. 2020. vol. 476. no. 2234. 20190498. DOI:10.1098/rspa.2019.0498
  22. Nahushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow, Fizmatlit, 2003, 272 (In Russian).
  23. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. vol. 204. Amsterdam: Elsevier Science Limited, 2006, 523 p.
  24. Uchaikin V. V. Fractional Derivatives for Physicists and Engineers. vol. I. Background and Theory. Berlin: Springer. 2013. 373 p. DOI:10.1007/978-3-642-33911-0
  25. Syta A., Litak G., Lenci, S., Scheffler M. Chaotic vibrations of the Duffing system with fractional damping. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2014. vol. 24. no. 1. DOI:10.1063/1.4861942
  26. Xin B., Li Y. 0-1 Test for Chaos in a Fractional Order Financial System with Investment Incentive. Abstract and Applied Analysis. 2013. vol. 2013. 876298. DOI:10.1155/2013/876298
  27. Diethelm K., Ford N. J., Freed A. D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics. 2002. vol. 29. no. (1-4). 3-22. DOI:10.1023/A:1016592219341
  28. Yang C., Liu F. A computationally effective predictor-corrector method for simulating fractional order dynamical control system. ANZIAM Journal. 2005. vol. 47. 168-184. DOI:10.21914/anziamj.v47i0.1037
  29. Garrappa R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics. 2018. vol. 6. no. 2. 016. DOI:10.3390/math6020016.
  30. Parovik R. I., Yakovleva T. P. Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package. Journal of Physics: Conference Series. 2022. vol. 2373. 52022. DOI:10.1088/1742-6596/2373/5/052022

Information about author

Parovik Roman Ivanovich – D. Sci. (Phys. & Math.), Associate Professor, Leading researcher, laboratory of modeling physical processes Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Head of the International Integrative Research Laboratory of Extreme Phenomena of Kamchatka, Kamchatka State University named after Vitus Bering, Petropavlovsk-Kamchatsky, Russia, ORCID 0000-0002-1576-1860.