Vestnik КRAUNC. Fiz.-Mat. nauki. 2023. vol. 43. no. 2. P. 141-165. ISSN 2079-6641

Research Article
Full text in Russian
MSC 78A40

Contents of this issue

Read Russian Version

Remote Methods for Observations of Shiveluch and Bezymianny Volcano Eruptions

E. I. Malkin¹^\ast, V. I. Cherneva², D. O. Makhlai², N. V. Cherneva¹, R. R. Akbashev³, D. V. Sannikov¹

¹Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia
²ITMO University, St. Petersburg, Russia
³Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia

Abstract. The paper presents the analysis of remote methods for observations during Shiveluch and Bezymianny volcano eruptions accompanied by natural pulse electromagnetic radiation (PER) in VLF range (3-30 kHz) from 2016. Based on the data of Kamchatka Branch of the Federal Research Center «Geophysical Survey RAS» (KB FRC GS RAS) [18], a catalogue of the strongest events on Shiveluch and Bezymianny volcanoes was made for the indicated period. 68 eruptions of Shiveluch volcano and 13 eruptions of Bezymianny volcano were selected as they were recorded by the VLF direction finder and accompanied by electromagnetic pulses that indicates that the eruptions caused «dirty» thunderstorm occurrences. Lightning activity in the ash-gas clouds during the volcanic eruptions was traced by radio technical monitoring means installed in the regions of Karymshina river, Kozyrevsk and Krutoberegovo villages. The scenario of event development has a two-stage character. The first stage of PER increase is accompanied by eruptive column formation and depends on burst power and ash ejection height. The second stage depends on eruption power and cloud propagation duration. Satellite data confirm the information on the motion of eruptive clouds accompanies by successive lightning strokes tracing the trajectory of their propagation. We also give preliminary description of Bezymianny and Shiveluch volcanoes events occurred in April 2023 and accompanied by ash ejections of the height up to 20 and 30 km, respectively.

Key words: Lightning discharge, pulse electromagnetic radiation, remote methods, satellite images

Received: 20.06.2023; Revised: 27.06.2023; Accepted: 28.06.2023; First online: 30.06.2023

For citation. Malkin E. I. et al. Remote methods for observations of Shiveluch and Bezymianny volcano eruptions. Vestnik KRAUNC. Fiz.-mat. nauki. 2023, 43: 2, 141-165. EDN:WWRQHZ.

Funding. The research was carried out within the framework of the state task of IKIR FEB RAS on the topic АААА-А21-

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing
the final version of the article in print. The final version of the manuscript was approved by all authors.

^\astCorrespondence: E-mail:

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Malkin E. I. et al., 2023

© Institute of Cosmophysical Research and Radio Wave Propagation, 2023 (original layout, design, compilation)


  1. Rulenko O.P., Tokarev P.I. Atmospheric-electric effects of Large Fissure Tolbachik Eruption in July-October 1975, Byulleten’ vulkanologicheskikh stantsiy. 1979. No. 56. pp. 96-102. (In Russian).
  2. James M. R., Lane S. J., Gilbert J. S. Volcanic plume monitoring using atmospheric electrical potential gradients, J. Geol. Soc. Lond., 1998, 155, 587–590. DOI: 10.1144/gsjgs.155.4.0587
  3. Shevtsov B. M., Firstov P. P., Cherneva N. V., Holzworth R. H., Akbashev R. R. Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014, Nat. Hazards Earth Syst. Sci., 2016, 16, 871–874. DOI: 10.5194/nhess-16-871-2016.
  4. Firstov P.P., Akbashev R.R., Holzworth R. et al. Atmospheric electric effects during the explosion of Shiveluch volcano on November 16, 2014. Izv. Atmos. Ocean. Phys. 2017, 53, 24–31. DOI: 10.1134/S0001433817010066
  5. Cherneva N. V., Firstov P. P., Akbashev R. R. Perspectives of monitoring of atmosphericelectric effects from volcanic eruptions in Kamchatka, Proc. SPIE 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 108337R (13 December 2018) DOI: 10.1117/12.2504174
  6. Firstov P.P., Cherneva N.V., Akbashev R.R, Malkin E.I., Druzhin G.I., “Atmosphericelectric effects from volcano eruptions on Kamchatka peninsula (Russia),”Proc. SPIE 11208, 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 1120874 DOI: 10.1117/12.2540356
  7. Firstov P.P., Malkin E.I., Akbashev R.R., Druzhin G.I., Cherneva N.V., Holzworth R.H., Uvarov V.N., Stasiy I.E. Registration of Atmospheric-Electric Effects from Volcanic Clouds on the Kamchatka Peninsula (Russia). Atmosphere, 2020, 11, 634. DOI: 10.3390/atmos11060634
  8. Malkin E. I., Cherneva N. V., Firstov P. P., Druzhin G. I., Sannikov D. V. Dirty thunderstorms caused by volcano explosive eruptions in Kamchatka by the data of electromagnetic radiation, IOP Conf. Ser.: Earth Environ. Sci. 2021, 946, 012015 DOI: 10.1088/1755-1315/946/1/012015
  9. Firstov P. P., Akbashev R. R., Malkin E. I., Cherneva N. V., Druzhin G. I. Atmospheric electrical effects during a strong explosive eruption of Bezymyanniy volcano (Kamchatka Peninsula, Russia) on December 20, 2017, IOP Conf. Ser.: Earth Environ. Sci. 2021, 840, 012020 DOI: 10.1088/1755-1315/840/1/012020
  10. Malkin E., Firstov P., Cherneva N., Druzhin G. Lightning Activity of Eruptive Clouds from Shiveluch Volcano (Kamchatka, Russia). Problems of Geocosmos–2020. Springer Proceedings in Earth and Environmental Sciences. 2022. DOI: 10.1007/978-3-030-91467-7_34
  11. Mather T. A., Harrison R. G. Electrification of volcanic plumes, Surv. Geophys., 2006, 27, 387–432. DOI: 10.1007/s10712-006-9007-2
  12. Rodger C. J., Werner S., Brundell J. B., Lay E. H., Thomson N. R., Holzworth R. H., Dowden R. L. Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study, Ann. Geophys., 2006, 24, 3197– 3214. DOI: 10.5194/angeo-24-3197-2006
  13. Druzhin G.I., Pukhov V.M., Sannikov D.V., Malkin E.I., VLF–direction finder to investigate natural radio radiations, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 2019, 27, 2, 95-104.DOI: 10.26117/2079-6641-2019-27-2-95-104,(In Russian).
  15. Dowden R. L., Brundell J. B., Rodger C. J. VLF lightning location by time of group arrival (TOGA) at multiple sites Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64, 7, 2002, 817-830. DOI: 10.1016/S1364-6826(02)00085-8
  16. Cummins K.L., Murphy M.J. An overview of Lightning Location System: History, Techniques, and Data Uses, With an In-Depth Look at the US.NLDN, IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 3. DOI: 10.1109/TEMC.2009.2023450
  17. Abarca S.F., Corbosiero K.L., Galarneau T.J. Jr. An evaluation of theWorldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth, J.Geophys. Res. 2010, 115, D18206, DOI: 10.1029/2009JD013411.
  19. Zobin V.M. Introduction to volcanic seismology. Third edition. Elsevier: Amsterdam. 2017. p.
  21. Firstov P.P., Akbashev R.R., Zharinov N.A., Maksimov A.P., Manevich T.M., Mel’nikov D.V. Electrification of eruptive plumes discharged by Shiveluch volcano in relation to the character of the responsible explosion, Journal of Volcanology and Seismology. 2019, 13, 3, 172–184. DOI: 10.1134/s0742046319030035
  22. Behnke S.A., Thomas R.J., McNutt S.R., Schneider D.J., Krehbiel P.R., Rison W., Edens H.E. Observations of volcanic lightning during the 2009 eruption of Redoubt volcano. J. Volcanol. Geotherm. Res. 2013, 259, 214–234. DOI: 10.1016/j.jvolgeores.2011.12.010
  23. Thomas R.J., McNutt S.R., Krehbiel R.P., Rison W., Aulich G., Edens H.E., Tytgat G., Clark E. Lightning and Electrical Activity during the 2006 Eruption of Augustine Volcano / The 2006 Eruption of Augustine Volcano, Alaska Power. Chapter 25. Editors: J.A., M.L Coombs J.T. Freymueller U.S. Geological Survey Professional, 2010, 1769, 580-609.
  24. James M. R., Lane S. J., Gilbert J. The density, construction and drag coefficient of electrostatic volcanic ash aggregates. J. Chem. Inf. Model. 1989, 53, 160. DOI:10.1029/2002JB002011.
  25. Miura T., Koyaguchi T., Tanaka Y. Measurements of electric charge distribution in volcanic plumes at Sakurajima volcano, Japan. Bull. Volcanol. 2002, 64, 75–93.
  26. M´endez H.J, Cimarelli C., Cigala V., Kueppers Dufek J. Charge injection into the atmosphere by explosive volcanic eruptions. Earth and Planetary Science Letters, 2021, 574.
  30. Girina, Analysis of the development of the paroxysmal eruption of Sheveluch volcano on April 10–13, 2023, based on data from various satellite systems, Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa, 2023, 20, 2, 283–291 DOI: 10.21046/2070-7401-2023-20-2-283-291 (Russian).

Information about authors

Malkin Evgeny Ilich – researcher laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0001-8037-1335.

Cherneva Veronika Ivanovna – lecturer by ITMO University, Faculty of Software Engineering and Computer Engineering, St. Petersburg, Russia, ORCID 0000-0002-0875-9463.

Makhlai Dmitriy Olegovich – lecturer by ITMO University, Faculty of Software Engineering and Computer Engineering, St. Petersburg, Russia, ORCID 0000-0003-3412-6480.

Cherneva Nina Volodarovna – Ph.D. (Phys. & Math.), Scientific Secretary, Leading Researcher laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0002-6440-7569.

Akbashev Rinat Rafikovich – Ph.D. (Phys. & Math.), Researcher of Investigations on Lithosphere Outgassing laboratory of Kamchatka branch of the Geophysical Service of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia, ORCID 0000-0002-0737-9610.

Sannikov Dmitriy Victorovich – lead engineer laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0001-8160-062X.