Vestnik КRAUNC. Fiz.-Mat. nauki. 2023. vol. 43. no. 2. P. 126-140. ISSN 2079-6641

PHYSICS
https://doi.org/10.26117/2079-6641-2023-43-2-126-140
Research Article
Full text in Russian
MSC 94A12

Contents of this issue

Read Russian Version

Reactive Power Compensation in Thermal Ore Production

A. A. Mahoshev¹^\ast, O. A. Gavrina¹, R. V. Klyuev²

¹The North Caucasian Institute of mining and metallurgy (State Technological University), 44, Nikolaeva, Vladikavkaz, 362011, Russia
²Moscow Polytechnic University, 38, B. Semenovskaya, Moscow, 107023, Russia

Abstract. The paper deals with the issues of reactive power compensation during the operation of arc steelsmelting furnaces (EAF) in ore-thermal production. The values of voltage non-sinusoidality coefficients for various EAF melting modes are given. Comprehensive studies were carried out, presenting an analysis of the effectiveness of reducing voltage distortion by power filters, which can be presented without a dynamic group, and comparing the data obtained with the results of using filters of the 3rd and 5th harmonics, which are part of reactive power compensators. The results of studies of the distortion of the shape of the voltage curve during the operation of the EAF indicate that in the absence of dynamic compensation devices, the requirements of the state standard for the quality of electricity are provided without turning on filters. Filters are needed to limit consumption while eliminating the possibility of resonance in parallelconnected capacitors and source-coupled inductive reactances. According to the results of the performed calculations, it can be seen that by installing the 3rd harmonic filter on the ZRU-35 kV buses, significant results were achieved, namely, the voltage swings were minimized (up to 0.78%) and the issue of reactive power compensation was simultaneously resolved (cosφ = 0.95) at the lowest unit cost.

Key words: compensation, reactive power, steel-smelting arc furnace, non-sinusoidal voltage, harmonic filter, static compensator.

Received: 29.05.2023; Revised: 25.06.2023; Accepted: 26.06.2023; First online: 07.07.2023

For citation. Mahoshev A. A., Gavrina O. A., Klyuev R. V. Reactive power compensation in thermal ore production.
Vestnik KRAUNC. Fiz.-mat. nauki. 2023, 43: 2, 126-140. EDN:VQAYYO. https://doi.org/10.26117/2079-6641-2023-43-2-
126-140.

Funding. The authors declare that there are no conflicts of interest regarding authorship and publication.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing
the final version of the article in print. The final version of the manuscript was approved by all authors.

^\astCorrespondence: E-mail: salima@list.ru, Gavrina-Oksana@yandex.ru, kluev-roman@rambler.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Mahoshev A. A., Gavrina O.A., Klyuev R. V., 2023

© Institute of Cosmophysical Research and Radio Wave Propagation, 2023 (original layout, design, compilation)

References

  1. Kruchinin A. M., Chursin A. Yu. Vliyanie formy toka dugi na reaktivnost’ ekvivalentnoj skhemy dugovyh staleplavil’nyh pechej [The influence of the arc current waveform on the electric arc steelmaking furnace equivalent circuit reactance]. Elektrichestvo [Еlectrichestvo]. 2020, 9, 40–44. DOI:10.24160/0013-5380-2020-9-40-44 (In Russian).
  2. Gurbanova G.A., Orazberdieva E. Uchet osobennostej raboty dugovyh staleplavil’nyh pechej v proektirovanii sistemy elektrosnabzheniya [Accounting for the features of the operation of arc steel-smelting furnaces in the design of the power supply system]. Innovacionnye nauchnye issledovaniya v sovremennom mire: teoriya, metodologiya, praktika. Sbornik nauchnyh statej po materialam VI Mezhdunarodnoj nauchnoprakticheskoj konferencii. Ufa, 2021, 68–71. (In Russian).
  3. Klyuev R.V., Vasiliev I.E., Kotova O.A. Kompensaciya reaktivnoj moshchnosti v sistemah elektrosnabzheniya s nelinejnymi nagruzkami [Compensation of jet power in systems of power supply with nonlinear loadings]. Materialy II Vserossijskoj nauchno-prakticheskoj konferencii «Sovremennye problemy elektroenergetiki i puti ih resheniya». Dagestan, 2011, 31–38. (In Russian).
  4. Gavrina O.A., Kodoev Z.A., Fomenko P.S., Yakushina E.I. Issledovanie kachestva elektroenergii v sisteme elektrosnabzheniya promyshlennyh predpriyatij [Study of the quality of electricity in the power supply system of industrial enterprises]. Problemy avtomatizacii. Regional’noe upravlenie. Svyaz’ i akustika. Sbornik trudov XI Vserossijskoj nauchnoj konferencii i molodezhnogo nauchnogo foruma. Sost. YU.B. SHCHemeleva, S.V. Kiril’chik, A.YA. Nomerchuk. Rostov-na-Donu – Taganrog, 2022, 354–359 (In Russian).
  5. Klyuev R.V., Fomenko O.A., Bosikov I.I., Gavrina O.A. Issledovanie kachestva elektroenergii tyagovyh podstancij vysokogornogo rudnika [Research of electric power quality of traction substations of a high mountain miner]. Proceedings of the Tula states university-sciences of earth. 2021, 4, 399–416 (Russian).
  6. Klyuev R.V., Bosikov I.I., Alborov A.D. Research of non-sinusoidal voltage in power supply system of metallurgical enterprises. Advances in Automation. RusAutoCon 2019. Lecture Notes in Electrical Engineering, 2019, 641. 393-400. DOI:10.1007/978-3-030-39225-3_42.
  7. Bulycheva E.A., Yanchenko S.A. Eksperimental’noe opredelenie vliyaniya istochnikov iskazhenij na nesinusoidal’nost’ napryazheniya seti. Upravlenie kachestvom elektricheskoj energii. Sbornik trudov Mezhdunarodnoj nauchno-prakticheskoj konferencii. Moskva, 2020, 13-19 (Russian).
  8. Kudelina D.V., Gubanov A.M. Vliyanie kachestva elektroenergii na energoeffektivnost’ v sistemah elektrosnabzheniya promyshlennyh predpriyatij. Energeticheskaya bezopasnost’. Sbornik nauchnyh statej III Mezhdunarodnogo kongressa. V 2-h tomah. 2020. 160-172. (In Russian).
  9. Mahela O.P., Shaik A.G. Power quality improvement in distribution network using DSTATCOM with battery energy storage system. International Journal of Electrical Power & Energy Systems, 2016, 83, 229-240. DOI:10.1016/j.ijepes.2016.04.011
  10. Hern´andez J.C., Ortega M.J., Cruz J. De la, Vera D. Guidelines for the technical assessment of harmonic, flicker and unbalance emission limits for PV-distributed generation. Electric Power Systems Research, 2011, 81, 7, 1247-1257. DOI:10.1016/j.epsr.2011.03.012
  11. Norouzi H., Abedi S., Jamalzadeh R., Rad M.G., Hosseinian S.H. Modeling and investigation of harmonic losses in optimal power flow and power system locational marginal pricing. Energy, 2014, 68, 140–147. DOI:10.1016/j.energy.2014.02.010
  12. Bhonsle D.C., Kelkar R.B. Analyzing power quality issues in electric arc furnace by modeling. Energy, 2016, 115, 1, 830–839. DOI:10.1016/j.energy.2016.09.043

Information about authors

Mahoshev Artur Ahmatovich – past master, The North Caucasian Institute of mining and metallurgy (State Technological University), ORCID 0000-0002-1314-6151.


Gavrina Oksana Alexandrovna – Ph.D. (Tech.), Associate Professor of the Department of Information Technologies and Systems, The North Caucasian Institute of mining and metallurgy (State Technological University), Russia, ORCID 0000-0002-9712-9075.


Klyuev Roman Vladimirovich – D.Sc. (Tech.), Professor of Technique and technology of mining and oil and gas production department, Moscow Polytechnic University, Russia, ORCID 0000-0003-3777-7203.