Vestnik КRAUNC. Fiz.-Mat. nauki. 2024. vol. 49. no. 4. P. 185-202. ISSN 2079-6641

PHYSICS
https://doi.org/10.26117/2079-6641-2024-49-4-185-202
Research Article
Full text in Russian
MSC 86-10, 86A25

Contents of this issue

Read Russian Version

Estimation of the Geomagnetically Induced Current Magnitude in the Central Power District of the Kamchatka Power System

A. Y. Gvozdarev^{\ast}, V. P. Sivokon, S. Y. Khomutov

Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS 684034 Kamchatka region, Elizovskiy district, Paratunka, Mirnaya str., 7, Russia

Abstract. A simulation of the geoelectric field, voltages on power transmission lines and geomagnetic induced currents (GIC) in the power lines of the Central Power District of the Kamchatka Region power system during an extreme magnetic storm was performed. The calculation uses a one-dimensional model of the lithosphere electrical conductivity distribution at Kamchatka with an average electrical resistivity of about 100 Ohms·m. The length and orientation of power lines, the linear resistance of their wires, the resistance and number of transformers at terminal substations, as well as the GIC distribution effect between neighboring closely located substations in the agglomeration «Petropavlovsk-Kamachsky — Elizovo» are taken into account. It is shown that the GIC amplitude can reach 1 A at the power lines «Mutnovskaya geothermal power plant — electrical substation Avacha» and «Elizovo — Milkovo» which are oriented along the meridian. On a 110 kV power line «Apacha — Yelizovo», which is oriented in the latitudinal direction, a GIC value of about 1.5 A can be observed. An assessment of the GIС effect on power transformers at the Apacha electrical substation showed that the intensity of the magnetic field generated by GIC in the transformer core does not exceed 24 % of the intensity of the working magnetic field. Such an effect is not dangerous for the transformer, but it can cause the generation of even harmonics.

Key words: geomagnetically induced current, Kamchatka, geomagnetical storm, simulation, 1D resistivity model, core magnetization coefficient

Received: 23.10.2024; Revised: 12.11.2024; Accepted: 19.11.2024; First online: 28.11.2024

For citation. Gvozdarev A. Y., Sivokon V.P., Khomutov S. Y. Estimation of the geomagnetically-induced current magnitude in the Central Power District of the Kamchatka power system. Vestnik KRAUNC. Fiz.-mat. nauki. 2024, 49: 4, 185-202. EDN: QNQZMC . https://doi.org/10.26117/2079-6641-2024-49-4-185-202.

Funding. The work was supported by IKIR FEB RAS State Task (subject registration No. 124012300245-2: Russian Federation).

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

^{\ast}Correspondence: E-mail: gvozdarev@ikir.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Gvozdarev A. Y., Sivokon V.P., Khomutov S. Y., 2024

© Institute of Cosmophysical Research and Radio Wave Propagation, 2024 (original layout, design, compilation)

References

  1. Pilipenko V. A. Space weather impact on ground-based technological systems, Solar-Terrestrial Physics, 2021, vol. 7, no. 3, pp. 68-104. DOI: 10.12737/stp-73202106
  2. Gaunt C. T., Coetzee G. Transformer failures in regions incorrectly considered to have low GIC-risk. 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007, pp. 807-812. DOI: 10.1109/PCT.2007.4538419
  3. Gil A., et. al. Review of geomagnetically induced current proxies in mid-latitude European countries, Energies, 2023, vol. 16, pp. 7406. DOI: 10.3390/en16217406
  4. Mac Manus D. H., Rodger C. J., Dalzell M., Thomson A. W.P., Clilverd M. A., Petersen T., et al. Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver, Space Weather, 2017 , vol. 15 , no. 8, pp. 1020–1038. DOI: 10.1002/ 2017SW001635
  5. Barbosa C. S., Hartmann G. A., Pinheiro K. J. Numerical modeling of geomagnetically induced currents in a Brazilian transmission line, Advances in Space Research, 2015, vol. 55, no. 4, pp. 1168–1179. DOI: 10.1016/j.asr.2014.11.008
  6. H¨ubert J., et. al. Validating a UK geomagnetically induced current model using differential magnetometer measurements, Space Weather, 2024, vol. 22, no. 2, e2023SW003769. DOI:10.1029/2023SW003769
  7. Albert D., et al. Analysis of long-term GIC measurements in transformers in Austria, Space Weather, 2022, vol. 20, no. 1, e2021SW002912. DOI: 10.1029/2021SW002912
  8. Zhang J. J., et al. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation, Space Weather, 2015, vol. 13, p. 643–655. DOI:10.1002/2015SW001263
  9. Watari S., et al. Measurement of geomagnetically induced currents (GIC) around Tokyo, Earth, Planets and Space, 2021, vol. 73, 102. DOI: 10.1186/s40623-021-01422-3
  10. Marsal S., Torta J.M., Curto J. J., Canillas-P´erez V., Cid O., Iba˜nez M., Marcuello A., Validating GIC modeling in the Spanish power grid by differential magnetometry, Space Weather, 2021, vol. 19, no. 12 DOI:10.1029/2021SW002905
  11. Caraballo R., Gonz´alez-Esparza J. A., Pacheco C. R., Corona-Romero P. Improved model for GIC calculation in the Mexican power grid, Space Weather, 2023 , vol. 21 , no.10, e2022SW003202 DOI:10.1029/2022SW003202R
  12. Espinosa K. V., Padilha A. L., Alves L. R., Schultz A., Kelbert A. Estimating geomagnetically induced currents in southern Brazil using 3-D Earth resistivity model, Space Weather, 2023 , vol. 21, no. 4, e2022SW003166 DOI: 10.1029/2022SW003166
  13. Matandirotya E., Cilliers P. J., Van Zyl R. R. Modeling geomagnetically induced currents in the South African power transmission network using the finite element method , Space Weather, 2015, vol. 13, pp.185–195 DOI: 10.1002/2014SW001135.
  14. ˇSvanda M., Smiˇckov´a A., V´yboˇsˇtokov´a T., Modelling of geomagnetically induced currents in the Czech transmission grid, Earth Planets and Space, 2021 , vol.73, no. 1, pp. 229. DOI: 10.1186/s40623-021-01555-5
  15. Selivanov V. N., Aksenovich T. V., Bilin V. А., Kolobov V. V., Sakharov Ya. A. Database of geomagnetically induced current in the main transmission line «Northern Transit», Solar-Terresrial Physics, 2023, vol. 9 , no. 3, pp. 100-110 DOI: 10.12737/szf-93202311 (In Russian).
  16. Sakharov Ya. A., Yagova N. V., Bilin V. A., Selivanov V. N., Aksenovich T. V., Pilipenko V. A. Parameters influencing the efficiency of generation of geomagnetically induced currents by nonstorm Pc5-6/Pi3 geomagnetic pulsations, Bulletin of the Russian Academy of Sciences: Physics, 2024, vol. 88, no. 3, pp. 289-295. DOI: 10.1134/S1062873823705421.
  17. Sivokon V.P. A New method for detecting geomagnetically induced currents, Russian Electrical Engineering , 2021, vol. 92, no. 11, pp. 685–690. DOI: 10.3103/S1068371221110146
  18. Uchaikin E. O., Gvozdarev A. Y. Organization of monitoring of even harmonics amplitudes in the electricity networks of the Altai Republic as an indicator of space weather, In: 2023 IEEE XVI International scientific and technical conference “Actual problems of electronic instrument engineering” (APEIE), Novosibirsk, Russian Federation, 2023, pp. 450-454. DOI: 10.1109/APEIE59731.2023.10347597
  19. Boteler D. H., Pirjola R. J. Numerical calculation of geoelectric fields that affect critical infrastructure, Int. jour. of geosci., 2019, vol. 10, pp. 930–949 DOI:10.4236/ijg.2019.1010053
  20. Gvozdarev A.Yu., et. al. Estimation of geomagnetically induced currents in the Altai republic power system according to the Baygazan magnetic station data, Bul. KRASEC. Phys. & math. sci. 2023, vol. 45 (4), 190-200. DOI: 10.26117/2079-6641-2023-45-4-190-200
  21. Skhema i programma razvitiya energetiki Kamchatskogo kraya na 2023–2027 gody [Scheme and program of energy development of the Kamchatka Territory for 2023-2027]. Petropavlovsk-Kamchatskiy, 2023, 432 p. (In Russian) https://kamgov.ru/minzkh/shema-i-programma-razvitia-energetiki-kamcatskogo-kraa.
  22. Provoda dlya vysokovol’tnykh vozdushnykh liniy elektroperedachi kompaktirovannye tipa Z marki AAAC-Z [Wires for high-voltage overhead power transmission lines, compact type Z of the AAAC-Z brand]. Uglich, Lamifil, 2024, 67 p. (In Russian).
  23.  Belyavksii V. V., Aleksanova E. D.Three-dimensional geoelectrical model of southern Kamchatka, Izvestiya, Physics of the Solid Earth, 2014, vol. 50, no. 1, pp. 9-31. DOI 10.1134/S1069351314010029
  24. Alekseev D., Kuvshinov A., Palshin N. Compilation of 3D global conductivity model of the Earth for space weather applications, Earth, Planets and Space, 2015, vol. 67, pp. 108. DOI:10.1186/s40623-015-0272-5
  25. Uchaikin E., Gvozdarev A., Kudryavtsev N. Assessment of the geomagnetically induced currents impact on the power transformers cores of the Altai Republic 110 kV power grid, In: E3S Web of Conferences, 2024, vol. 542, pp. 02002. DOI: 10.1051/e3sconf/202454202002

Information about the authors

Gvozdarev Alexey Yur’evich – Ph. D. (Tech.), Senior Researcher, Complex Geophysical observatory “Paratunka Institute of Cosmophysical Research and RadioWave Propagation Far Eastern Branch of the Russian Academy of Sciences, Paratunka, Russia, ORCID 0000-0002-0196-4712.


Sivokon Vladimir Pavlovich – D. Sci. (Tech.), chief science officer, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Kamchatka, Russia, ORCID 0000-0002-3661-7964


Khomutov Sergey Yur’evich – Ph. D. (Phys. & Math.), Head of Geophysical Observatory Paratunka, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Kamchatka, Russia, ORCID 0000-0002-6231-7041