Вестник КРАУНЦ. Физ.-мат. науки. 2020. Т. 32. № 3. C. 102-113. ISSN 2079-6641
Содержание выпуска/Contents of this issue
Research Article
MSC 32A07, 432A10, 32A07
On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains
R. F. Shamoyan¹, E. B. Tomashevskaya²
¹Department of Mathematical Analysis, Bryansk State University named after Academician I. G. Petrovsky, Bryansk, 241036, Bryansk, str. Bezhitskaya, 14, Russia
²Department of Mathematics, Bryansk State Technical University, Bryansk 241050, Russia
E-mail: rsham@mail.ru, tomele@mail.ru
We provide new equivalent expressions in the unit ball and pseudoconvex domains for multifunctional analytic BMOA type space. We extend in various directions a known theorem of atomic decomposition of BMOA type spaces in the unit ball.
Keywords: unit ball, analytic functions, analytic spaces, pseudoconvex domain, Hardy spaces, Bergman spaces, BMOA type spaces
DOI: 10.26117/2079-6641-2020-32-3-102-113
Original article submitted: 30.04.2020
Revision submitted: 08.08.2020
For citation. Shamoyan R. F., Tomashevskaya E. B. On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains. Vestnik KRAUNC. Fiz.-mat. nauki. 2020, 32: 3, 102-113. DOI: 10.26117/2079-6641-2020-32-3-102-113
The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)
© Shamoyan R. F., Tomashevskaya E. B., 2020
Научная статья
УДК 517.55+517.33
О новых точных теоремах разложения для многофункциональных пространств типа ВМОА в ограниченных псевдовыпуклых областях
Р. Ф. Шамоян¹, Е. Б. Томашевская²
¹Брянский государственный университет имени академика И. Г. Петровского, 241036, г. Брянск, Россия
²Брянский государственный технический университет, 241050, г. Брянск, Россия
E-mail: rsham@mail.ru, tomele@mail.ru
Мы приводим новые эквивалентные выражения в единичных шаровых и псевдовыпуклых областях для многофункционального аналитического пространства типа BMOA. Мы расширяем в различных направлениях известную теорему атомарного разложения пространств типа BMOA в единичном шаре.
Ключевые слова: единичный шар, аналитические функции, аналитические пространства, псевдовыпуклая область, пространства Харди, пространства Бергмана, пространства типа BMOA.
DOI: 10.26117/2079-6641-2020-32-3-102-113
Поступила в редакцию: 30.04.2020
В окончательном варианте: 08.08.2020
Для цитирования. Shamoyan R. F., Tomashevskaya E. B. On new sharp theorems for multifunctional BMOA type spaces in bounded pseudoconvex domains // Вестник КРАУНЦ. Физ.-мат. науки. 2020. Т. 32. № 3. C. 102-113. DOI: 10.26117/2079-6641-2020-32-3-102-113
Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/deed.ru)
© Шамоян Р. Ф., Томашевская Е. Б., 2020
References
- Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measure in strongly pseudoconvex domains”, J. Func. Anal., 263:11 (2012), 3449-3491.
- Andersson M., Carlsson H., “Qp spaces in strictly pseudoconvex domains”, Journal d’Analyse Mathematique, 84 (2001), 335-359.
- Arsenovic M., Shamoyan R., “On some sharp estimates for distances in bounded strictly pseudoconvex domains”, Bulletin Korean Math. Society, 52:1 (2015), 85-103.
- Beatrous F., Jr., “Lp estimates for extensions of holomorphic functions”, Michigan Math. Jour., 32:3 (1985), 361-380.
- Bekolle D., Bonami A., Garrigos G. and others., Lecture notes on Bergman projectors in tube domains over cones., Procedings of the international Workshop on classical Analysis, Yaounde, 2001, 75 pp.
- Cohn W. S., “Weighted Bergman projections and tangential area integrals, Studia Math.”, 106:1 (1993), 59-76.
- Faraut J., Koranyi A., Analysis on symmetric cones, Oxford Mathematical Monographs. V. XII, Oxford University Press, New York, 1994, 382 pp.
- Krantz S.G., Li S.-Y., “On decomposition theorems for Hardy spaces on domains in Cn and applications”, Jour, Four. Analysis and Applic, 2 (1995), 65-107.
- Luecking D., “Representations and duality in weighted spaces of analytic functions”, Indiana Univ. Math. Journal, 34:2 (1985), 319-336.
- Ortega J.M., Fabrega J., “Mixed-norm spaces and interpolations”, Studia Math., 109:3 (1994), 233-254.
- Range R. M., Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Mathematics. V. 108, Springer-Verlag, New York, 1986.
- Rochberg R., “Decomposition theorems for Bergman spaces and their applications, Operators and function theory (Lancaster 1984)”, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153 (1985), 225–277.
- Shamoyan R. F.“On decomposition theorems of multifunctional Bergman type spaces in some domains in Cn”, Vestnik KRAUNC. Fiz.-mat. nauki., 26:1 (2019), 28-45.
- Shamoyan R. F., Loseva V. V., “On Hardy type spaces in some domains in Cn and related problems”, Vestnik KRAUNC. Fiz.-mat. nauki, 27:2 (2019), 12–37.
- Shamoyan R.F., Tomashevskaya E.B.“On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains”, Vestnik KRAUNC. Fiz.-mat. nauki, 30:1 (2020), 42-58.
- Shamoyan R. F., Tomashevskaya E. B.“On New Decomposition Theorems in some Analytic Function Spaces in Bounded Pseudoconvex Domains”, Journal of Siberian Federal University, Mathematics and Physics, 13(4) (2020), 503-514.
- Zhu K., Spaces of Holomorphic Functions in the unit ball, Springer-Verlag-New York, 2005, 226 pp.
References (GOST)
- Abate M., Raissy J., Saracco A. Toeplitz operators and Carleson measure in strongly pseudoconvex domains // J. Func. Anal. vol. 263. no. 11. 2012. pp. 3449-3491.
- Andersson M., Carlsson H. Qp spaces in strictly pseudoconvex domains // Journal d’Analyse Mathematique. vol. 84. 2001. pp. 335-359.
- Arsenovic M., Shamoyan R. On some sharp estimates for distances in bounded strictly pseudoconvex domains // Bulletin Korean Math. Society. vol. 52. no. 1. 2015. pp. 85-103.
- Beatrous F., Jr. Lp estimates for extensions of holomorphic functions // Michigan Math. Jour. 1985. vol. 32. no. 3. pp. 361-380.
- Bekolle D., Bonami A., Garrigos G. and others. Lecture notes on Bergman projectors in tube domains over cones. Yaounde: Procedings of the international Workshop on classical Analysis. 2001. 75 c.
- Cohn W. S. Weighted Bergman projections and tangential area integrals, Studia Math. vol. 106. no. 1. 1993. pp. 59-76.
- Faraut J., Koranyi A. Analysis on symmetric cones. Oxford Mathematical Monographs. XII. New York: Oxford University Press, 1994. 382 p.
- Krantz S.G., Li S.-Y. On decomposition theorems for Hardy spaces on domains in Cn and applications // Jour, Four. Analysis and Applic. 1995. vol. 2. pp. 65-107.
- Luecking D. Representations and duality in weighted spaces of analytic functions // Indiana Univ. Math. Journal. 1985. vol. 34. no. 2. pp. 319-336.
- Ortega J.M., Fabrega J. Mixed-norm spaces and interpolations // Studia Math. 1994. vol. 109. no. 3. pp. 233-254.
- Range R. M. Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics. 108. New York: Springer-Verlag, 1986.
- Rochberg R. Decomposition theorems for Bergman spaces and their applications, Operators and function theory (Lancaster 1984) // NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 1985. vol. 153. pp. 225–277.
- Shamoyan R. F. On decomposition theorems of multifunctional Bergman type spaces in some domains in Cn // Vestnik KRAUNC. Fiz.-mat. nauki. 2019. vol. 26. no. 1. pp. 28-45.
- Shamoyan R. F., Loseva V.V. On Hardy type spaces in some domains in Cn and related problems // Vestnik KRAUNC. Fiz.-mat. nauki. 2019. vol. 27. no. 2. pp. 12–37.
- Shamoyan R.F., Tomashevskaya E.B. On some new decomposition theorems in multifunctional Herz and Bergman analytic function spaces in bounded pseudoconvex domains // Vestnik KRAUNC. Fiz.-mat. nauki. 2020. vol. 30. no. 1. pp. 42-58.
- Shamoyan R. F., Tomashevskaya E. B. On New Decomposition Theorems in some Analytic Function Spaces in Bounded Pseudoconvex Domains // Journal of Siberian Federal University, Mathematics and Physics. 2020. vol. 13(4). pp. 503-514.
- Zhu K. Spaces of Holomorphic Functions in the unit ball. Springer-Verlag-New York, 2005. 226 p.
Шамоян Роми Файзович – кандидат физико-математических наук, старший научный сотрудник кафедры математического анализа, Брянский государственный университет имени академика И. Г. Петровского, г. Брянск, Россия, ORCID 0000-0002-8415-9822.
Shamoyan Romi Fayzovich – Ph. D. (Phys. & Math.), Senior Researcher, Department of Mathematical Analysis, Bryansk State University named after Academician I. G. Petrovsky, Bryansk, Russia, ORCID 0000-0002-8415-9822.
Томашевская Елена Брониславовна – кандидат физико-математических наук, доцент кафедры «Высшая математика» Брянского государственного технического университета, г. Брянск, Россия.
Tomashevskaya Elena Bronislavovna – Ph. D. (Phys. & Math.), Associate Professor of the Department of Higher Mathematics, Bryansk State Technical University, Bryansk, Russia.