Bulletin KRASEC. Phys. & Math. Sci. 2016. V. 12. no. 1. pp. 75-82. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2016-12-1-75-82

MSC 81V35

METHOD OF MONITORING OF UNDISTURBED RADON FLUX DENSITY FROM SOIL SURFACE

V.S. Yakovleva¹, P.M. Nagorskiy², G.A. Yakovlev³

¹National Research Tomsk Polytechnic University, 634050, Tomsk, Lenin st., 30 Russia,
²Institute of Monitoring of Climatic and Ecological Systems SB RAS, 634055, Tomsk, Akademicheskaya st., 10 / 3., Russia,
³Municipal budget educational institution, Secondary School «Eureka-Development”, 634050, Tomsk, Yrtochny side st. 8, build. 1., Russia.
E-mail: vsyakovleva@tpu.ru

The paper presents the results of analysis of measurement methods for radon flux density from the soil surface. A new method of monitoring of undisturbed radon flux density from the soil surface is described. It may be applied within a wide range of meteorological conditions. The method is based on registration of a-radiation of radon decay products collected inside an accumulation chamber installed on the soil surface. The accumulative chamber has some small vent holes for partial soil gas emission. The procedure of calibration and determination of correction coefficients is described. The results of testing of the method and comparison of the monitoring data obtained by different methods are discussed. The new method differs from the analogues in the way that it allows the authors to investigate diurnal variations of radon flux density.

Key words: radon, flux density, undisturbed flux.

 

References

  1. Yakovleva V. S., Nagorskiy P. M., Cherepnev M. S. Formirovanie a-, b- i g-poley prizemnoy atmosfery prirodnymi atmosfernymi radionuklidami [Formation of a-, b- и g-fields of the surface atmosphere by natural atmospheric radionuclides]. Vestnik KRAUNTS. Fiz.-mat. nauki–Bulletin of KRAESC. Phys. & Math. Sci. 2014. 1(8). pp. 86–96
    2. Yakovleva V. S., Nagorskiy P. M. The development of radiation monitoring technology for urban. Bulletin KRAESC. Physical and Mathemtical Sciences. 2015. vol. 10. no 1. pp. 59–65
    3. Yakovleva V. S. Metody izmereniya plotnosti potoka radona i torona s poverkhnosti poristykh materialov [Methods for measurements of radon and thoron flux densities from the surfaces of porous materials]. Tomsk. Pub. of Tomsk Polytechnic University. 2011. 174 p.
    4. Firstov P. P., Yakovleva V. S., Shirokov V. A., Rulenko O. P., Filippov Yu. A., Malysheva O. P. The nexus of soil radon and hydrogen dynamics and seismicity of the northern flank of the Kuril-Kamchatka subduction zone. Annals of Geophysics. 2007. vol. 50. no. 4. pp. 547–556
    5. Yakovleva V. S. The radon flux density from the Earth’s surface as an indicator of a seismic activity. 7th International Conference on gas geochemistry (ICGG7). Freiberg, Germany, 2003. ICGG7. Freiberg. 2003. pp. 28–30
    6. Parovik R. I., Firstov P. P. Aprobatsiya novoy metodiki rascheta plotnosti potoka radona s poverkhnosti (na primere Petropavlovsk-Kamchatskogo geodinamicheskogo poligona) [Tests of a new method for calculation of radon flux density from the surface (on the example of Petropavlovsk-Kamchatskiy geodynamic test field)]. ANRI. 2009. no 3. pp. 52–57
    7. Firstov P. P., Parovik R. I., Yakovleva V. S., Malysheva O. P. Svyaz’ skorosti advektsii i plotnosti potoka radona s sil’nymi zemletryaseniyami yuzhnoy Kamchatki v 2000-2008 gg. [Relation of advection velocity and radon flux density with strong earthquakes in South Kamchatka in 2000-2008] Proceedings of the V International Conference «Solar-terrestrial Relations and Physics of Earthquake Precursors». Kamchatskiy krai, Petropavlovsk-Kamchatskiy, 2010. IKIR FEB RAS. Petropavlovsk-Kamchatskiy. 2010. pp. 50–51
    8. Chalmers Dzh. A. Atmosphernoe elektrichestvo [Atmospheric electricity]. Leningrad Gidrometeoizdat. 1974. 420 p.
    9. Parovik R. I., Il’in I. A., Firstov P. P. Obobshchennaya odnomernaya model’ massoperenosa radona i ego ekskhalyatsiya v prizemnyy sloy atmosfery [Generalized one-dimensional model of radon mass transfer and its exhalation into the atmosphere surface layer]. Matematicheskoe modelirovanie. 2007. vol. 19. no 11. pp. 43–50
    10. Kotrappa P., Dempsey J. C., Hickey J. R., Stieff L. R. An electret passive environmental Rn-222 monitor based on ionization measurement. Health Phys. 1988. no. 54. pp. 47–56
    11. Kotrappa P. et al. A Practical E-PEPM System for Indoor 222Rn Measurement. Health Physics. 1990. vol. 81. no. 58. pp. 461–467
    12. Hartman B. How to collect reliable soil-gas data for upward risk assessments. Surface flux-chamber method. vol. 2. Bulletin 44. LUSTLine. 2003. pp. 14–34
    13. Yakovleva V. S. et al. Metodologiya mnogofaktornogo eksperimenta po protsessam perenosa radona v sisteme «litosfera–atmosfera» [Methodology of a multi-factor experiment on the processes of radon transfer in «lithosphere-atmosphere» system. ANRI. 2009. no. 4. pp. 55–60
    14. Yakovleva V. S. Modelirovanie vliyaniya sostoyaniya atmosfery ilitosfery na dinamiku plotnosti potoka radona i torona s poverkhnosti zemli [Modeling of the effect of atmosphere and lithosphere state on the dynamics of radon and thoron flux densities from the soil surface]. Bulletin of TPU. 2010. vol. 317. no. 2. pp. 162–166
    15. Yakovleva V. S., Vukolov A.V. Sposob izmereniya plotnosti potoka radona i torona s poverkhnosti grunta po a-izlucheniyu [A technique for measurement of radon and thoron flux densities from the soil surface by a-radiation]. RF Patent No. 2419817 from 03.03.10.
    16. Rogalis V. S., Kuz’mich S. G., Pol’skiy O. G. Issledovaniya vliyaniya vremennykh i pogodnykh usloviy na potoki radona na stroitel’nykh ploshchadkakh g. Moskvy [Investigations of temporary and weather conditions on radon fluxes at Moscow building areas]. ANRI. 2001. no. 4. pp. 57–61
    17. Reiter E. R. Atmospheric Transport Processes — Part 4: Radiactive Tracers. Technical Information Center, US Department of Energy, 1978
    18. Sisigina T. I. Kolebaniya ekskhalyatsii radona iz pochvy v atmosferu v svyazi s izmeneniem meteorologicheskikh usloviy [Oscillations of radon exhalation from the ground into the atmosphere due to weather condition change] Radioaktivnost’ atmosfery, pochvy i presnykh vod, Moskva [Radioactivity of the atmosphere, soil and pure water, Moscow]. Proceedings of the Institute of Experimental Meteorology. Moscow. Moskovskoe otdelenie gidrometeoizdata. 1970. no. 5. pp. 3–15

For citation: Yakovleva V. S., Nagorskiy P. M., Yakovlev G. A. Method of monitoring of undisturbed radon flux density from soil surfacee. Bulletin KRASEC. Physical and Mathematical Sciences 2016, vol. 12, no 1, 75-82. DOI: 10.18454/2313-0156-2016-12-1-75-82

Original article submitted: 20.03.2016


Yak

 ….

 Yakovleva Valentina Stanislavovna – Dr. Sci. (Tech.), Associate Professor, Professor of Dep. Applied Physics, National Research Tomsk Polytechnic University, Tomsk.

.

.

.


N   …. 

   Nagorskiy Petr Mikhailovich – Dr. Sci. (Phys. & Math.), Professor, Leading Researcher of Lab. Physics of Climate Control Systems, Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk.

.

.

.


Gri

 …  Yakovlev Grigoriy – Eureka Development student of the Municipal budget educational institution of secondary school, Tomsk.

Download article  Yakovkeva V.S., Nagorskiy P.M., Yakovlev G.A.