Вестник КРАУНЦ.Физ.-мат. науки. 2021. Т. 34. №1. C. 63-79. ISSN 2079-6641
Содержание выпуска/Contents of this issue
MSC 49J15, 49N05
Research Article
On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones
R. F. Shamoyan, E.B Tomashevskaya
Department of Mathematics, Bryansk State Technical University, Bryansk 241050, Russia
E-mail: rsham@mail.ru, tomele@mail.ru
We introduce new multifunctional mixed norm analytic Herz-type spaces in tubular domains over symmetric cones and provide new sharp embedding theorems for them. Some results are new even in case of onefunctional holomorphic spaces. Some new related sharp results for new multifunctional Bergman-type spaces will be also provided under one condition on Bergman kernel.
Keywords: Bergman spaces, Herz spaces, tubular domains over symmettic cones, embedding theorems, analytic functions
DOI: 10.26117/2079-6641-2021-34-1-63-79
Original article submitted: 26.12.2020
Revision submitted: 21.03.2021
For citation. Shamoyan R. F., Tomashevskaya E.B. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones. Vestnik KRAUNC. Fiz.-mat. nauki. 2021, 34: 1, 63-79. DOI: 10.26117/2079-6641-2021-34-1-63-79
Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.
Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.
The content is published under the terms of the Creative Commons Attribution 4.0 International
License (https://creativecommons.org/licenses/by/4.0/deed.ru)
© Shamoyan R. F., Tomashevskaya E. B, 2021
УДК 517.55+517.33
Научная статья
О некоторых новых точных теоремах для мультифункциональных аналитических пространств типа Бергмана и типа Герца в трубчатой области над симметрические и конусами
Р. Ф. Шамоян, Е. Б. Томашевская
Брянский государственный технический университет, 241050, г. Брянск, Россия
E-mail: rsham@mail.ru, tomele@mail.ru
В статье вводятся многофункциональные аналитические пространства типа Герца со смешанной нормой в трубчатых областях над симметрическими конусами и для этих пространств доказываются новые точные теоремы вложения. Некоторые наши утверждения являются новыми и в частном случае, тоесть для однофункциональных пространств типа Герца. В неограниченных областях указанного типа нами
вводятся новые многофункциональные аналитические пространства типа Бергмана и доказываются подобные новые точные теоремы вложения при одном дополнительном
условии на ядро Бергмана.
Ключевые слова: аналитические функции, трубчатая область, пространство Герца, пространство Бергмана,теоремы вложения.
DOI: 10.26117/2079-6641-2021-34-1-63-79
Поступила в редакцию: 26.12.2020
В окончательном варианте: 21.03.2021
Для цитирования. Shamoyan R. F., Tomashevskaya E.B. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones // Вестник КРАУНЦ. Физ.-мат. науки.
2021. Т. 34. № 1. C. 63-79. DOI: 10.26117/2079-6641-2021-34-1-63-79
Конкурирующие интересы. Авторы заявляют, что конфликтов интересов в отношении авторства и публикации нет.
Авторский вклад и ответственность. Все авторы участвовали в написании статьи и полностью несут ответственность за предоставление окончательной версии статьи в печать.
Окончательная версия рукописи была одобрена всеми авторами.
Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International
(https://creativecommons.org/licenses/by/4.0/deed.ru)
© Шамоян Р. Ф., Томашевская Е. Б., 2021
References
- Abate M., Raissy J., Saracco A., “Toeplitz operators and Carleson measures in strongly pseudoconvex domains”, Journal of Functional Analysis, 263:11 (2012), 3449–3491.
- Abate M., Saracco A., “Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains”, J. London Math. Soc., 83 (2011), 587–605.
- Arsenovi´c M., Shamoyan R. F., On embeddings, traces and multipliers in harmonic function spaces, arXiv:1108.5343.
- Arsenovi´c M., Shamoyan R. F., Embedding theorems for harmonic multifunctional spaces on Rn+1, arXiv:1109.2419.
- Beatrous F., “Lp estimates for extensions of holomorphic functions”, Michigan Math. Journal, 32:3 (1985), 361–380.
- Bekolle D., Berger C., Coburn L., Zhu K., “BMO in the Bergman metric on bounded symmetric domains”, Journal of Functional Analysis, 93:2 (1990), 310–350.
- Cohn W., “Weighted Bergman Projection and tangential area integrals”, Studia Math, 106:1 (1993), 121–150.
- Cima J., Mercer P., “Composition operators between Bergman spaces in convex domains in Cn”, J. Operator theory, 33 (1995), 363–369.
- Carleson L., “Interpolations by bounded analytic function and the corona problem”, Annals of Mathematics, 1962, 547–559.
- Duren P. L., “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75 (1969), 143–146.
- Englis M., H¨anninen T., Taskinen J., “Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous”, Houston Journal of Mathematics, 32:1 (2006), 253–275.
- W. W. Hastings, “A Carleson measure theorem for Bergman spaces”, Proc. Am. Math. Soc., 52 (1975), 237–241.
- H¨ormander L., An introduction to complex analysis in several variables, North Holland, Amsterdam, 1973.
- Luecking D., “A technique for characterizing Carleson measures on Bergman spaces”, Proc. Amer. Math. Soc., 87 (1983), 656–660.
- Mercer P., Cima J., “Composition operators between Bergman spaces on convex domains in Cn”, J. Operator Theory, 33:2 (1995), 363–369.
- Oleinik V. L., Pavlov B. S., “Embedding theorems for weighted classes of harmonic and analytic functions”, Journal of Mathematical Sciences, 2:2 (1974), 135–142.
- Oleinik V. L., “Embeddings theorems for weighted classes of harmonic and analytic functions”, J. Soviet Math., 9 (1978), 228–243.
- Ortega J., Fabrega J., “Mixed-norm spaces and interpolation”, Studia Math., 109:3 (1994), 234–254.
- Rudin W., Function theory in the unit ball of Cn, Springer-Verlag, Berlin, 1980.
- Shamoyan R. F., “On some characterizations of Carleson type measure in the unit ball”, Banach J. Math. Anal., 3:2 (2009), 42–48.
- Shamoyan R. F., Kurilenko S., “On a New Embedding Theorem in Analytic Bergman Type Spaces in Bounded Strictly Pseudoconvex Domains of n-dimensional Complex Space”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 383-388.
- Shamoyan R. F., Maksakov S. P., “Embedding theorems for weighted anisotropic spaces of holomorphic functions in strongly pseudoconvex domains”, Romai J., 2017, №1(13), 71–92.
- Shamoyan R. F., Mihi´c O., “Embedding theorems for weighted anisotropic spaces of holomorphic functions in tubular domains”, Romai J, 2017, №1(13), 93–115.
- Shamoyan R. F., Mihi´c O., “On some new sharp estimates in analytic Herz-type function spaces in tubular domains over symmetric cones”, Czechoslovak Math. J., 2018.
- Shamoyan R. F., Povpritz E., “Multifunctional analytic spaces and new sharp embedding theorems in strongly pseudoconvex domains”, Krag. Math. J., 37 (2013), 221–244.
- Wogen W. R., Cima J. A., “A Carleson measure theorem for the Bergman space on the ball”, J. Operator Theory, 7 (1982), 157–165.
- Zhu K., Spaces of holomorphic functions in the unit ball, Springer-Verlag, New York, 2005.
- Faraut J., Koranyi A., Analysis on symmetric cones, Oxford University Press, New York, 1994, 382 pp.
- Bekolle D., Bonami A., Garrigos G. et al, “Lecture notes on Bergman projectors in tube domains over cones”, Proceedings of the international Workshop on classical Analysis, Yaounde, 2001, 75 pp.
- Debertol D., “Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains”, Dottorato di Ricerca in Matematica, Universita di Genova, Politecnico di Torino, 2003.
- Sehba B., Bergman-type integral operators in tube domains over symmetric cones, Proceedings of Edinburg Math. Soc.
- Duren P., Schuster A., Bergman spaces, Mathematical Surveys and Monographs. V. 100, AMS, 2004.
- Arsenovi´c M., Shamoyan R., “On some extremal problems in spaces of harmonic functions”, ROMAI Journal, 2011, №7, 13-34.
- Shamoyan R. F., Mihi´c O., “On new estimates for distances in analytic function spaces in the unit disc, polydisc and unit ball”, Bollet. de la Asoc. Matematica Venezolana, 42:2 (2010), 89-103.
- Shamoyan R., Mihi´c O., “On new estimates for distances in analytic function spaces in higher dimension”, Siberian Electronic Mathematical Reports, 2009, №6, 514-517.
- Sehba B., Operators in some analytic function spaces and their dyadic counterparts, PhD, Dissertation, Glasgow, 2009.
- Sehba B., “Hankel operators on Bergman spaces of tube domains over symmetric cones”, Integr. eq. operator theory, 62 (2008), 233-245.
- Bekolle D., Bonami A., Garrigos G., Nana C., Peloso M., Ricci F., Lecture notes on Bergman projectors in tube domain over cones, an analytic and geometric viewpoint, Proceeding of the International Workshop on Classical Analysis, Yaounde, 2001, 75 pp.
- Sehba B. F. and Nana C., “Carleson Embeddings and two operators on Bergman spaces of tube domains over symmetric cones”, Integr. Equ. Oper. Theory, 83 (2015), 151-178.
- Arsenovic M., Shamoyan R., Embedding relations and boundedness of the Bergman projection in tube domains over symmetric cones, Filomat, 2011.
Шамоян Роми Файзович – кандидат физико-математических наук, Брянский государственный технический университет, Брянск, Россия, ORCID 0000-0002-8415-9822.
Shamoyan Romi Fayzovich – Ph.D. (Phys. & Math.), Senior Researcher, Bryansk State Technical University, Bryansk, Russia, ORCID 0000-0002-8415-9822.
Томашевская Елена Брониславовна – кандидат физико-математических наук, доцент кафедры кафедры «Высшая математика» Брянского государственного технического университета, г. Брянск, Россия.
Tomashevskaya Elena Bronislavovna – Ph.D. (Phys. & Math.) Associate Professor of the Department of Higher Mathematics, Bryansk State Technical University, Bryansk, Russia.