Bulletin KRASEC. Phys. & Math. Sci, 2014, V. 9, №. 2, pp. 79-84. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2014-9-2-79-84

MSC 68T10

THE TECHNIQUE OF INCREASE THE EFFICIENCY OF LEARNING NEURAL KOHONEN MAPS FOR RECOGNITION OF PERTURBATIONS GEOACOUSTIC EMISSION

A.V. Shadrin

Institute of Cosmophysical Researches and Radio Wave Propagation Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia.

E-mail: SugerMas@yandex.ru.

This work is dedicated to technique of training Kohonen maps on the example of geoacoustical signal in the subrange 1500-6000 Hz. Describes the parameters of learning the Kohonen maps to classify anomalies in geoacoustical signal on different types.

Key words: geoacoustical emission, geoacoustic signal, disturbance, neural Kohonen maps, learning.

References

  1. M. Rodkin. Prognoz nepredskazuemyh katastrof [Forecast unpredictable disasters]. Vokrug sveta – Round the world, 2008, no. 6, pp. 88-100.
  2. A. G. Sobolev, A. V. Ponomarev. Fizika zemletryasenij i predvestniki [Physics and forerunners of earthquakes]. Moscow, Nauka Publ., 2003. 270 p.
  3. Dobrovol’skij I.P., Zubkov S.I., Myachkin V.I. Ob ocenke razmerov zony proyavleniya predvestnikov zemletryasenij. Modelirovanie predvestnikov zemletryasenij [On the estimation of the size of the zone display of earthquake precursors. Simulation of earthquake precursors]. Moscow, Nauka Publ., 1980. pp. 7–44.
  4. A. V. Kupcov, Yu. V. Marapulec, B. M. Shevcov. Analiz izmenenij geoakusticheskoj ‘emissii v processe podgotovki sil’nyh zemletryasenij na Kamchatke []. Issledovano v Rossii – Investigated in Russia, 2004, vol. 262, pp. 2809-2818. URL: http://zhurnal.ape.relarn.ru/articles/2004/262.pdf.
  5. Kupcov A. V., Larionov I.A., Shevcov B.M. Osobennosti geoakusticheskoj ‘emissii pri podgotovke kamchatskih zemletryasenij [Features geoacoustic emission during preparation Kamchatka earthquakes]. Vulkanologiya i sejsmologiya – Volcanology and Seismology, 2005, no. 5, pp. 45-59.
  6. J. Schatzmann. Using Self-Organizing Maps to Visualise Clusters and Trends in Multidimensional Datasets BEng thesis, Imperial College. June 19. 2003. URL: http://mi.eng.cam.ac.uk/∼js532/ papers/schatzmann03soms.pdf).
  7. Vesanto J. Data Exploration Process Based on the Self-Organizing Map, Acta Polytechnica Scandinavica. Mathematics and Computing Series, 2002, no. 115, pp. 96.
  8. Arsuaga Uriarte, F. Diaz Martin. Topology Preservation in SOM. PWASET, 2006, vol. 15, pp. 187-191.
  9. Mischenko M.A. Statisticheskij analiz vozmuschenij geoakusticheskoj ‘emissii, predshestvuyuschih sil’nym zemletryaseniyam na Kamchatke [Statistical analysis of the perturbation geoacoustical emission prior to strong earthquakes in Kamchatka]. Vestnik KRAUNC. Fiziko-matematicheskie nauki – Bulletin KRASEC. Physical and Mathematical Sciences, 2011, vol. 2, no. 1, pp. 56–64.

Original article submitted: 15.11.2014


Sha
  Shadrin Alexander Vitalyevich – Junior Researcher of Lab. Acoucstic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS.

Download article Shadrin A.V.