Bulletin KRASEC. Phys. & Math. Sci. 2016. V. 13. no. 2. pp. 50-56. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2016-13-2-50-56

MSC 93A30

ON A DYNAMIC HEREDITARY SYSTEM SIMULATING ECONOMIC CYCLES

D.V. Makarov

Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia
E-mail: danil-makarov-pk@ya.ru

The paper presents a mathematical model that generalizes the famous Dubovskiy’s model used to predict economic crises. This generalization consists in the consideration of the memory effect which occurs frequently in the economic system. With the help of numerical methods, a generalized model solution was received, according to which phase paths were built.

Key words: Kandrat’ev’s cycles, economic crisis, Dubovskiy’s model, fractional derivative Gerasimov-Caputo operator, memory effect, fractal dimension.

References

  1. Parovik R. I. Modelirovanie vybora rukovodstvom vysshego uchebnogo zavedeniya optimal’nogo resheniya, soglasovannogo s upravlyayushchimi resheniyami ego filialov [Simulation of the choice of an optimal solution by higher education institution administration which is coordinated with the decisions of its
    branches]. Vestnik KRAUNTs. Fiz.-mat. nauki – Bulletin KRASEC. Phys. & Math. Sci. 2013. no. 1(6). pp. 5–11.
    2. Kondrat’ev N. D., Oparin D. N. Bol’shie tsikly kon»yunktury [Large cycles of market conditions]. Moscow. Institut Economiki. 1928. 287 p.
    3. Mensch G. Stalemate in Technology. Innovations Overcome the Depression. Cambrg. Ballinger Pub Co.1979. 241 p.
    4. Dubovskiy S.V. Ob»ekt modelirovaniya – tsikl Kondrat’eva [The simulation object is Kondrat’ev’s cycle]. Matematicheskoe modelirovanie – Mathematical models and computer simulations. 1995. vol. 7. no. 6. pp. 65–74.
    5. Dubovskiy S.V. Modelirovanie tsiklov Kondrat’eva i prognozirovanie krizisov [Simulation of Kondrat’ev’s cycles and prediction of crises ]. Kondrat’evskie volny. Aspekty i perspektivy [Kondrat’ev’s waves. Aspects and prospective]. A. A. Akaev. Volgograd. Uchitel’. 2012. pp. 179–188.
    6. Dubovskiy S.V. Prognozirovanie katastrof (na primere tsiklov N.D. Kondrat’eva) [Crisis prediction (on the example of Kondrat’ev’s cycles)]. Obshchestvennye nauki i sovremennost’. 1993. no. 5. 82–91.
    7. Makarov D.V. Ekonomiko-matematicheskoe modelirovanie innovatsionnykh sistem [Economic-mathematical modeling of innovation systems]. Vestnik KRAUNTs. Fiz.-mat. nauki – Bulletin KRASEC. Phys. & Math. Sci. 2014. 1(8). pp. 66–70.
    8. Makarov D.V., Parovik R. I. Obobshchennaya matematicheskaya model’ Dubovskogo dlya prognozirovaniya ekonomicheskikh krizisov [Generalized mathematical Dubovskiy’s model to forecast economic crises]. Nauchno-tekhnicheskiy vestnik Povolzh’ya – Scientific and Technical Volga region Bulletin. 2016. no. 1. pp. 74–77.
    9. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow. Fizmatlit. 2003. 272 p.
    10. Boleantu M. Fractional dynamical systems and applications in economy. Differential Geometry — Dynamical Systems. vol. 10. 2008. pp. 62–70.
    11. Yiding Y., Lei H., Guanchun L. Modeling and application of new nonlinear fractional financial model. Journal of Applied Mathematics. 2013.
    12. Tejado I., Duarte V., Nuno V. Fractional Calculus in Economic Growth Modeling. The Portuguese case. Conference: 2014 International Conference on Fractional Differentiation and its Applications (FDA’14).
    13. Mendes R.V. A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 2008.
    14. Zhenhua H., Xiaokang T. A new discrete economic model involving generalized fractal derivative. Advances in Difference Equations. 2015. vol. 65. http://dx.doi.org/10.1186/s13662-015-0416-8.
    15. Shpil’ko Ya. E., Solomko A. A., Parovik R. I. Parametrizatsiya uravneniya Samuel’sona v modeli Evansa ob ustanovlenii ravnovesno tseny na rynke odnogo tovara [Parameterization of Samuelson equation in Evans model on the determination of equilibrium price at a single commodity market]. Vestnik KRAUNTs. Fiz.-mat. nauki – Bulletin KRASEC. Phys. & Math. Sci. 2012. no. 2(5). pp. 33–36
    16. Samuta V.V., Strelova V. A., Parovik R. I. Nelokal’naya model’ neoklassicheskogo ekonomicheskogo rosta Solou [Nonlocal Solow model of neoclassical economic growth]. Vestnik KRAUNTs. Fiz.-mat. nauki – Bulletin KRASEC. Phys. & Math. Sci. 2012. no. 2(5). pp. 37–41.
    17. Nakhusheva Z. A. Ob odnoy odnosektornoy makroekonomicheskoy modeli dolgosrochnogo prognozirovaniya [On a one-sector maсroeconomic model for long-term forecast]. Doklady AMAN – Reports of Adyghe (Circassian) International Academy of Sciences. 2012. vol. 14. no. 1. pp. 124–127.
    18. Parovik R. I. Matematicheskoe modelirovanie lineynykh ereditarnykh ostsillyatorov [Mathematical modeling of linear hereditary oscillators]. Petropavlovsk-Kamchatskiy. KamGU imeni Vitusa Beringa. 2015. 178 p.

For citation: Makarov D.V. On a dynamic hereditary system simulating economic cycles. Bulletin KRASEC. Physical and Mathematical Sciences 2016, vol. 13, no 2, 50-56. DOI:10.18454/2313-0156-2016-13-2-50-56.

MakOriginal article submitted: 25.03.2016

   Makarov Danil Vasil’evich – graduate student of the second year of training, the master’s program in Applied Mathematics and Computer Science, Vitus Bering Kamchatka State University, Petropavlovsk-Kamchatsky, Russia.

Download article Makarov D.V.