Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 41. no. 4. pp. 120–136. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

INFORMATION AND COMPUTATION TECHNOLOGIES

MSC 94A12

Research Article

Modern methods of processing and analysis of geophysical pulse signals

O. O. Lukovenkova, M. A. Mishchenko, Yu. I. Senkevich, A. O. Shcherbina

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034, Paratunka, Mirnaya Str., 7, Russia

E-mail: o.o.lukovenkova@yandex.ru

The studies of various physical fields are conducted at Institute of cosmophysical research and radio wave propagation. The signals recorded during such studies often have pulse nature, i. e., they are sequences of pulses. The paper observes modern methods of digital signal processing which can be used for the analysis of geophysical pulse signals. To search for signal fragments which contain anomalies, the digital filtering within seven frequency bands and further averaging over 1-second intervals are proposed. To isolate single pulses under conditions of permanent background noise, the adaptive threshold scheme is used. To remove noise and to separate the informal part of the signals, wavelet thresholding is applied. To analyse the time- frequency content of pulses, the authors offer sparse approximation method. To study peculiarities of pulse shape, the transformation of a pulse into the binary matrix which uniquely determines the pulse form.

Key words: pulse signals, signal processing, signal analysis.

DOI: 10.26117/2079-6641-2022-41-4-120-136

Original article submitted: 01.12.2022

Revision submitted: 01.12.2022

For citation. Lukovenkova O. O., Mishchenko M. A., Senkevich Yu. I., Shcherbina A. O. Modern methods of processing and analysis of geophysical pulse signals. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 41: 4, 120-136. DOI: 10.26117/2079-6641-2022-41-4-120-136

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Lukovenkova O. O. et al., 2022

Funding. The research was carried out as part of the implementation of the state assignment АААА-А21-121011290003-0.

References

  1. Marapulets Yu. V., Senkevich Yu. I. , Lukovenkova O. O., Solodchuk A. A., Larionov I. A., Mishchenko M. A., Malkin E. I., Shcherbina A. O., Gapeev M. I. Kompleksnyj analiz akusticheskih i jelektromagnitnyh signalov dlja ocenki urovnja sejsmicheskoj opasnosti [Complex analysis of acoustic and electromagnetic signals to assess seismic hazard level]. Vladivostok, Dalnauka, 2020, 120 (In Russian).
  2. Druzhin G. I., Bashkuev Yu. B., Naguslaeva I. B., Cherneva N. V., Shevtsov B. M. Lightning according to electromagnetic field observations in Buryatiya, Proceedings of 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russian Federation, November 29, 2016, 10035. DOI: 10.1117/12.2247926
  3. Marapulets Yu. V., Shevtsov B. M. Mezomasshtabnaja akusticheskaja jemissija [Mesoscale acoustic emission]. Vladivostok, Dalnauka, 2012, 126 (In Russian).
  4. Fu K. S., Mui J. K. A survey on image segmentation, Pattern Recognition, 1981, 13:1, 3–16. DOI: 10.1016/0031-3203(81)90028-5
  5. Frucci M., Sanniti G., Sanniti di Baja G. From Segmentation to Binarization of Gray-Level Images, Journal of Pattern Recognition Research, 2008, 3:1, 1–13. DOI: 10.13176/11.54
  6. Evtikhiev N. N., Kozlov A. V., Krasnov V. V., Rodin V. G., Starikov R. S., Cheremkhin P. A. A method for measuring digital camera noise by automatic segmentation of a striped target, Computer Optics, 2021, 4:2, 267–276. DOI: 10.18287/2412-6179-CO-815
  7. Budunova K. A., Kravchenko V. F., Pustovoit V. I. Digital Frequency-Selective Filters Based on Spectra of Atomic Functions, Journal of Communications Technology and Electronics, 2019, 64, 1095–1100. DOI: 10.1134/S1064226919100036
  8. Lukovenkova O., Marapulets Yu., Kim A., Tristanov A. A Complex Method for Automatic Detection of Geoacoustic Emission Pulses Preceding Earthquakes, Proceedings of International Multi-Conference on Industrial Engineering
    and Modern Technologies (FarEastCon), Vladivostok, Russia, October 03–04, 2018. DOI: 10.1109/FarEastCon.2018.8602865
  9. Srikar G., Prasad Ch. R. An Enhanced Audio Noise Removal Based on Wavelet Transform and Filters, Advances in Computational Sciences and Technology, 2017, 10, 3111–3121.
  10. Srivastava M., Anderson C. L., Freed J. H. A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds, IEEE Access, 2016, 4, 3862–3877. DOI: 10.1109/ACCESS.2016.2587581
  11. Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology, by D. Baleanu (editor). IntechOpen, 2012, 648.
  12. Donoho D. L. De-noising by soft-thresholding, IEEE Transactions on Information Theory, 1995, 41, 613-–627. DOI: 10.1109/18.382009
  13. Cai T. On block thresholding in wavelet regression: Adaptivity, block size, and threshold level, Statistica Sinica, 2002, 12, 1241-1273.
  14. Abramovich F., Benjamini Y., Donoho D. L., Johnstone I. M. Adapting to Unknown Sparsity by Controlling the False Discovery Rate, The Annals of Statistics, 2006, 34, 584-653. DOI: 10.1214/009053606000000074
  15. Johnstone I. M., Silverman B. W. Needles and Straw in Haystacks: Empirical Bayes Estimates of Possibly Sparse Sequences, The Annals of Statistics, 2004, 32, 1594-1649. DOI: 10.1214/009053604000000030
  16. Lukovenkova O. Application of adaptive wavelet thresholding to recovery geoacoustic signal pulse waveforms, EPJ Web of Conferences, vol. 254, Proceedings of XII International Conference “Solar-Terrestrial Relations and Physics of Earthquake Precursors”, Paratunka, Kamchatka region, Russia, September 27–October 1, 2021. DOI:10.1051/epjconf/202125402004
  17. Mallat S. G., Zhang Zh. Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, 1993, 41:12, 3397-–3415. DOI: 10.1109/78.258082.

Lukovenkova Olga Olegovna – PhD (Tech.), Senior Researcher, Laboratory of Acoustic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia ORCID 0000-0003-2333-4292.


Mishchenko Mikhail Aleksandrovich – PhD (Phys. & Math.), Senior Researcher, Laboratory of Acoustic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia ORCID 0000-0003-1958-5830.


Senkevich Yuri Igorevich – D. Sci. (Tech.), Docent, Leading Researcher, Laboratory of Acoustic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0003-0875-6112.


Shcherbina Albert Olegovich – PhD (Phys. & Math.), Senior Researcher, Laboratory of Acoustic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0002-7236-161X.