Bulletin KRASEC. Phys. & Math. Sci, 2014, V. 9, №. 2, pp. 70-78. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2014-9-2-70-78

MSC 65C20


O.O. Lukovenkova¹²

¹Institute of Cosmophysical Researches and Radio Wave Propagation Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia

²Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia

E-mail: o.o.lukovenkova@yandex.ru.

The paper is devoted to the comparative analysis of some sparse approximation methods. The first part of the paper describes general sparse approximation problem and two main approaches solved it. Classification of testing pursuit algorithm is illustrated. Features of the methods application to geoacoustic emission signals are considered in the second part. The sparseness, accuracy and runtime of described pursuit algorithms are compared.

Key words: matching pursuit, basis pursuit, geoacoustic emission.


  1. Marapulec Yu.V. Shevcov B.M. Mezomasshtabnaya akusticheskaya ‘emissiya [Mesoscale acoustic emission]. Vladivostok, Dal’nauka Publ., 2012.
  2. Chen S. S., Donoho D. L., Saunders M. A. Atomic decomposition by basis pursuit. SIAM Journal on Scientic Computing, 1998, vol. 20, no. 1, pp. 33–61.
  3. Beck A. and Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. Siam J. Imaging Sciences, 2009, vol. 2, no. 1, pp. 183–202.
  4. Goldstein T., Setzer S. High-order methods for basis pursuit. Los Angeles, Preprint University of California, 2010.
  5. Mallat S., Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12), pp. 3397-3415.
  6. Tropp J. A. and Gilbert A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions Information Theory, 2007, vol. 53, no. 12, pp. 4655–4666.
  7. Marapulec Yu.V., Tristanov A.B. Primenenie metoda razrezhennoj approksimacii v zadachah analiza signalov geoakusticheskoj ‘emissii [Application of the sparse approximation for the analysis of signals geoacoustical emission]. Cifrovaya obrabotka signalov – Digital signal processing, 2011, no. 2, pp. 13-17.
  8. Marapulec Yu.V., Tristanov A.B. Razrezhennaya approksimaciya akusticheskih vremennyh ryadov s ispol’zovaniem chastotno-vremennogo slovarya Berlage [Sparse approximation of the acoustic time series with time-frequency vocabulary Berlage]. Trudy Rossijskogo nauchno-tehnicheskogo obschestva radiotehniki, ‘elektroniki i svyazi im. A.S. Popova. Seriya: Cifrovaya obrabotka signalov i ee primenenie [Proc. of the Russian Scientific and Technical Society of Radio Engineering, Electronics and Communication named after AS Popova]. Moscow, 2012, vol. 1, pp. 91-94.
  9. Afanas’eva A.A., Lukovenkova O.O. Metody obnaruzheniya impul’sov geoakusticheskoj ‘emissii na osnove algoritmov razrezhennoj approksimacii i klasterizacii [Methods of detection pulses geoacoustical emission based on sparse approximation algorithms and clustering]. Vestnik KRAUNC. Fiziko-matematicheskie nauki – Bulletin KRASEC. Physical & Mathematical Sciences, 2013, vol. 7, no. 2, pp. 68-73.

Original article submitted: 29.11.2014


  Lukovenkova Olga Olegovna – Assistent of Dept. Informatics, Vitus Bering Kamchatka State University, Postgraduate Student, Institute of Cosmophysical Research and Radio Wave Propagation.


Download article Lukovenkova O.O.