Вестник КРАУНЦ.Физ.-мат. науки. 2021. Т. 36. №3. C. 210-223. ISSN 2079-6641

Содержание выпуска/Contents of this issue

MSC 86A10

Research Article

Investigating the concentration of radionuclides in wells used as drinking water in northern Nigeria.
A case study of Jos metropolis

I. Godwin¹³, I. A. Mohammed², I. M. Awwal³

¹School of Nuclear Science & Engineering, Nuclear Fuel Cycle Department, Tomsk Polytechnic University, 634050, Tomsk, Lenina avenue, 2 building 4, Russia
²Nasarawa State University, P.M.B 1022, Keffi, Nasarawa State, Nigeria
³Nigeria Atomic Energy Commission, 9 Kwame Nkrumah Cres, Asokoro, 900231, Abuja, Nigeria

E-mail: inigodwin7777@gmail.com

The increasing health effects of nuclear radiation occasioned by the enhanced human activities in the environment necessitated the need for constant investigation and assessment of radiological impact on the general populace within a confined area. Based on this, Twenty two (22) (Hand dug and motorized) well water samples were collected from various locations distributed across Jos Metropolis, Jos North LGA, Plateau State, Nigeria and analyzed for the concentration activity of these radionuclides (40K, 210Pb, 224Ra, 232Th, 238U) using radiochemical analysis technique, a high resolution gamma ray Spectrometry and a radon emanometry technique. The estimated mean concentration activity of 40K, 210Pb, 224Ra, 232Th and 238U in well water samples use as drinking water were determined. The mean concentration ranges from 1.36±0.51 Bq/l to 5.75±1.30 Bq/l. The mean concentration of 40K in well water samples ranges from 3.80±1.19 Bq/l to 2.05±0.30 Bq/l. The mean concentration of dissolved 224Ra in well water samples collected varies from 5.75±1.30 Bq/l to 1.95±0.58 Bq/l. 210Pb has an average concentration of 2.68 ± 0.80 Bq/l to 1.97±0.87 Bq/l. 232Th and 238U had average concentrations of 3.09 ± 0.57 Bq/l to 1.89±0.24 Bq/l and 5.41 ± 1.37 Bq/l to 1.36±0.51 Bq/l respectively. 210Pb and 224Ra were slightly above the recommended limits of 0.10 Bq/l and 1.00 Bq/l respectively, this can be attributed to the geological formation of the sampled area. 232Th and 238U where within the accepted standard limits of 1.00 Bq/l and 10.00 Bq/l recommended value by WHO (World Health Organization) and ICRP (International commission on radiological protection). Activity concentrations of measured radionuclides are in general decreasing in this order: 238U > 40K > 224Ra > 232Th > 210Pb for well water samples within Jos North LGA, respectively.

Keywords: drinking water, radionuclides, NORMS Concentrations, well water.

DOI: 10.26117/2079-6641-2021-36-3-210-223

Original article submitted: 30.09.2021

Revision submitted: 13.10.2021

For citation. Godwin I., Mohammed I. A., Awwal I. M. Investigating the concentration of radionuclides in wells used as drinking water in northern Nigeria. A case study of Jos metropolis. Vestnik KRAUNC. Fiz.-mat. nauki. 2021, 36: 3, 210-223. DOI: 10.26117/2079-6641-2021-36-3-210-223

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Godwin I., Mohammed I. A., Awwal I. M., 2021

УДК 551.594.1+551.594.2+551.515.4

Научная статья

Исследование концентрации радионуклидов в колодцах, используемых в качестве питьевой воды в северной Нигерии. На примере мегаполиса Джос

И. Годвин¹³, И. A. Мохаммед², И. М. Аввал³

¹Томский политехнический университет, 634050, г. Томск, пр. Ленина, 30, Россия
²Государственный университет Насарава, Кеффи, штат Насарава, Нигерия
³Комиссия по атомной энергии Нигерии, Абуджа, Нигерия

E-mail: inigodwin7777@gmail.com

Растущее воздействие ядерной радиации на здоровье, вызванное усилением деятельности человека в окружающей среде, обусловило необходимость постоянного исследования и оценки радиологического воздействия на население в пределах ограниченной территории. Было отобрано двадцать два образца колодезной воды из различных мест, распределенных по мегаполису Джос, Нигерия, и проанализированы на активность радионуклидов (40K, 210Pb, 224Ra, 232Th, 238U) с использованием метода радиохимического анализа, гамма-спектрометрии высокого разрешения и метода радоновой эманометрии. Определены средние концентрации радионуклидов в образцах воды из скважин, используемых в качестве питьевой воды. Средняя концентрация 40K колеблется от 3,80±1,19 Бк/л до 2,05±0,30 Бк/л. Средняя концентрация 224Ra варьируется от 5,75±1,30 Бк/л до 1,95±0,58 Бк/л. 210Pb от 2,68±0,80 Бк/л до 1,97±0,87 Бк/л. 232Th и 238U имели средние концентрации от 3,09±0,57 Бк/л до 1,89±0,24 Бк/л и от 5,41±1,37 Бк/л до 1,36±0,51 Бк/л. 210Pb и 224Ra были немного выше рекомендуемых пределов 0,10 Бк/л и 1,00 Бк/л, это может быть связано с геологическим строением отобранной области. 232Th и 238U находились в пределах принятых стандартных пределов 1,00 Бк/л и 10,00 Бк/л, рекомендованных ВОЗ и МКРЗ.

Ключевые слова: колодезная питьевая вода, активность, Нигерия

DOI: 10.26117/2079-6641-2021-36-3-210-223

Поступила в редакцию: 30.09.2021

В окончательном варианте: 13.10.2021

Для цитирования. Godwin I., Mohammed I. A., Awwal I. M. Investigating the concentration of radionuclides in wells used as drinking water in northern Nigeria. A case study of Jos metropolis // Вестник КРАУНЦ. Физ.-мат. науки. 2021. Т. 36. № 3. C. 210-223. DOI: 10.26117/2079-6641-2021-36-3-210-223

Конкурирующие интересы. Авторы заявляют, что конфликтов интересов в отношении авторства и публикации нет.

Авторский вклад и ответственность. Все авторы участвовали в написании статьи и полностью несут ответственность за предоставление окончательной версии статьи в печать. Окончательная версия рукописи была одобрена всеми авторами.

Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International
(https://creativecommons.org/licenses/by/4.0/deed.ru)

© Годвин И., Мохаммед И. А., Аввал И. М., 2021

References

  1. Anomohanran O. Geophysical investigation of groundwater potential in Ukalegbe, Nigeria // J. Appl. Sci., 2013. vol. 13, no. 1, pp. 119–125.
  2. James Mclntosh-2018 15 benefits of drinking water-medical news today https://www.medicalnewstoday.com/articles/290814.
  3. Huang L., Pu X., Pan J.F., Wang B. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea // Chemosphere, 2013. vol. 93, pp. 1957–1964.
  4. Gao X., Zhou F., Chen C. T. A.Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals // Environ. Int., 2014. vol. 62, pp. 12–30.
  5. Pan J., Pan J. F., Wang M.Trace elements distribution and ecological risk assessment of seawater and sediments from Dingzi bay, Shandong Peninsula, North China // Mar. Pollut. Bull., 2014. vol. 89, pp. 427–434.
  6. Abbasisiar F. T., Hosseini A., Heravi F. G. Determination of uranium isotopes (234 U, 238 U) and natural uranium (U-nat) in water samples by alpha spectrometry // Iran J. Radiat. Res., 2004. vol. 2, pp. 1–6.
  7. Fatima I., Zaidi J. H., Arif M., Tahir S.N.A. Measurement of natural radioactivity in bottled drinking water in Pakistan and consequent dose estimates // Radiat. Prot. Dosim., 2007. vol. 123, pp. 234–240.
  8. El Arabi A., Ahmed N., Din K. S. Natural radionuclides and dose estimation in natural water resources from Elba protective area, Egypt, Radiat. // Prot. Dosim., 2006. vol. 121, pp. 284–292.
  9. Ahmad N., Rehman J. Ur., Rehman J., Nasar G. Effect of geochemical properties (pH, conductivity, TDS) on natural radioactivity and dose estimation in water samples in Kulim, Malaysia // Hum. Ecol. Risk Assess: An Int. J., 2019. vol. 23, no. 7, pp. 1688–1696.
  10. Tchokossa P., Olomo J. B., Osibote O.A. Radioactivity in the community water supplies of Ife – Central and Ife – East Local Government area of Osun –State, Nigeria // J Nucl Instrument Methods Phys Res, 1999. vol. A422, pp. 784–789.
  11. Haukson E. Radon content of ground water as an earthquake precursor: Evaluation of worldwide data and physical basis // J. Geog. Res., 1981. vol. 186, pp. 9397–9410.
  12. Wallenberg H.A., Smith A. R., Mosier D. F., Flexser S., Clacrk M. Radon-222 in ground water of the long valley, Caldera, Califonia // Pure Appl. Geophys., 1985. vol. 122, pp. 327–329.
  13. Vandenhove H., Sweeck L., Mallants D., Vanmarcke H., Aitkulov A., Sadyrov O., Savosin M., Tolongutov B., Mirzachev M., Clerc J. J., Quarch H., Aitaliev A. Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan // J. Environ. Radioact., 2006. vol. 88, no. 2, pp. 118–139.
  14. Avwiri G. O., Tchokossa P., Mokobia C. E. Natural radionuclides in bore-hole water in Port-Harcourt, Rivers state, Nigeria // Radiat. Protect. Dosimetry, 2007. vol. 123, no. 4, pp. 509–514.
  15. Ajayi O. S., Achuka J. Radioactivity in Drilled and Dug well Drinking water of Ogun State Southwestern Nigeria and Consequent Dose Estimates // Radiat. Prot. Dosimetry, 2009. vol. 135, no. 1, pp. 54-63.
  16. Ajayi O. S., Adesida G. Radioactivity in some sachet drinking water samples produced in Nigeria // Iran J. Radiat. Res., 2009. vol. 7(3), pp. 151-153.
  17. Isikwue B. C., Isikwue M. O., Danduwa T. F. Assessment of Radionuclide Concentrations in Some PublicWater in Use in Markudi Metropolis of Benue State, Nigeria // Journal of Research in Forestry, Wildlife and Environment, 2009. vol. 1, pp. 93-99.
  18. Onoja R. A., Daniel J. A. Sunday O., (2013). Physical parameters and total radioactivity concentrations in some borehole water // Archives of Applied Science Research, 2013. vol. 5(3), pp. 211-219.
  19. Sources, effects and risks of ionizing radiation, Report to the General Assembly with Scientific Annex: UNSCEAR, 2013.
  20. Orebiyi E. O., Awomeso J. A., Idowu O. A., Martins O., Oguntoke O. et al. Assessment of pollution hazards of shallow well water in Abeokuta and environs, Southwest, Nigeria // Am. J. Environ. Sci., 2010. vol. 6, pp. 50-56.
  21. WHO statistical profile. Country Statistics and Global Health Estimates by WHO and UN Partners: Global Health Observatory, World Health Organization, 2015.
  22. Dinerstein E., Olson D., et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm // BioScience, 2017. vol. 67(6), pp. 534–545.
  23. Terrestrial Ecoregions, World Wildlife Fund https://www.worldwildlife.org/ecoregions/at1010.
  24. Protected Area Profile for Nigeria from the World Database of Protected Areas: UNEP-WCMC, 2020 www.protectedplanet.net.
  25. Rani L. M., Jeevanram R. K., Kannan V., Govindaraju M. Estimation of Polonium-210 activity in marine and terrestrial samples and computation of ingestion dose to the public in and around Kanyakumari coast, IndiaJournal of Radiation Research and Applied Sciences, 2014. vol. 7(2), pp. 207-213.
  26. Uosif M. A. M., El-Taher A., Abbady A. G. E. Radiological Significance of beach sand used for Climatotherapy from Safaga, Egypt // Rad. Prot. Dosimetry, 2008. vol. 131, no. 3, pp. 331-339.
  27. Baseline radioactivity measurements in the vicinity of a gold processing plantJ. Applied Science & Technology, 2007. vol. 12(1&2), pp. 18-24.
  28. Darko E. O., Faanu A., Awudu A. R., Emi-Reynolds G., Oppon O. C., Mensah-Brobbey I., Quansah T., Dapaah K., Addo W. Public Exposure to hazards associated with NORMS in mining and mineral processing activities in Ghana, Final Technical Report of data, IAEA TC Project GHA 9005. Accra, 2008.
  29. Sethy N. K.,Jha V. N., Ravi P. M., Tripathi R.M.A simple method for calibration of Lucas scintillation cell counting system for measurement of 226Ra and 222Rn // Journal of Radiation Research and Applied Sciences, 2014. vol. 7, no. 4, pp. 472-477.
  30. Raghavayya M. Environmental radonmetry and emanometry / Workshop on Environmental Radioactivity, vol. 11. Kaiga, India, 1990, pp. 16-18.
  31. Kannan V., Iyengar M. A. R., Ramesh R. Dose estimates to the public from 210Po ingestion via dietary sources at Kalpakkam (India) // Applied Radiation and Isotopes, 2001. vol. 54, no. 4, pp. 663-674.
  32. Ibikunle S. B., Arogunjo A. M., Ajayi O. S., Olaleye O. O. Risk assessment of natural radioactivity in surface water and sediments from waterfall site, Osun state, Nigeria, Hum. Ecol. Risk Assess // An Int. J., 2017. vol. 23, no. 8, pp. 1978–1988.
  33. Age-dependent Doses to Members of the Public from Intake of Radionuclides, International Commission on Radiological Protection. Part 5, Compilation of Ingestion and Inhalation Dose Coefficients.
    ICRP Publication 72. Oxford, United Kingdom: Pergamon Press, 1996.
  34. Guidelines for Drinking-Water Quality, World Health Organization, Library Cataloguing-in-Publication Data NLM classification. Geneva, 2011.
  35. Guidelines for drinking-water quality. Geneva, Switzerland: World Health Organization, 2011 Google Scholar.
  36. Peterson J., MacDonell M., Haroun L., Monette F., Hildebrand R. D. et al. Radiological and chemical fact sheets to support health risk analyses for contaminated areas, Environ. Sci. Division Argonne National Laboratory, 2007.
  37. Ugbede F. O. Measurement of background ionizing radiation exposure levels in selected farms in communities of Ishielu LGA, Ebonyi State, Nigeria // J. Appl. Sci. Environ. Manag., 2018. vol. 22, no. 9, pp. 1427–1432.
  38. Ramakrishnan M. Precambrian mafic magmatism in the western Dharwarcraton, southern India // Journal of the Geological Society of India, 2009. vol. 73(1), pp. 101-116.
  39. United States Environmental Protection Agency, Office of water. Setting standards for safe drinking water. Revised June 9. US, EPA, Washington, 2000.
  40. Measurement of Radionuclides in food and the Environment Guide book, International Atomic Energy Agency, Technical Report series No 295. Vienna: IAEA, 1989.

Godwin Ini – PhD student of the Department of Nuclear Fuel Cycle, Tomsk Polytechnic University, Tomsk, Russia.

Годвин Ини – аспирант отделения ядерного топливного цикла Томского политехнического университета, г. Томск, Россия.


Mohammed Ibrahim Adamu – Lecturer Nasarawa State University, Keffi, Nasarawa State, Nigeria.

Мохаммед Ибрагим Адаму – лектор Государственного университета Насарава, Кеффи, штат Насарава, Нигерия.


Awwal Isah Mohammed – Scientific Officer, Nigeria Atomic Energy Commission, Abuja, Nigeria.

Аввал Исах Мохаммед – научный сотрудник, Комиссия по атомной энергии Нигерии, Абуджа, Нигерия.