Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 40. no. 3. pp. 28–41. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

MSC 53A15, 53A55, 53B30

Research Article

Equivalence of paths in some non-Euclidean geometry

R. A. Gafforov¹, K. K. Muminov²

¹Fergana State University, 150100, Fergana, st. Murabbiylar, 19, Republic of Uzbekistan
²National University of Uzbekistan, 100174, Tashkent, Mirzo Ulugbek str., Republic of Uzbekistan
E-mail: gafforov.rahmatjon@mail.ru

Let G be a subgroup of the group of all reversible linear transformations of a finitedimensional real space Rn. One of the problems of differential geometry is to find easily verifiable necessary and sufficient conditions that ensure that G is the equivalence of paths lying in Rn. The article establishes the necessary and sufficient conditions for the equivalence of paths in some non-Euclidean geometry.

Key words: pseugo-Galilean space, group of movements, regular path.

DOI: 10.26117/2079-6641-2022-40-3-28-41

Original article submitted: 22.09.2022

Revision submitted: 22.10.2022

For citation. Gafforov R. A., Muminov K. K. Equivalence of paths in some non-Euclidean geometry. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 40: 3, 28-41. DOI: 10.26117/2079-6641-2022-40-3-28-41

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Gafforov R. A., Muminov K. K., 2022

References

  1. Muminov K. K., Chilin V. I. Ekvivalentnost’ krivykh v konechnomernykh prostranstvakh [Equivalence of curves in finite-dimensional spaces]. LAMBERT Academic Publishing. Deutschland (In Russian)
  2. Muminov K. K., Chilin V. I. Basis of trancendense in differential field of invariants of pseugo-Galilean group, Russian Mathematics (Izvestiya VUZ. Matematika), 2019, no. 3, pp. 19–31. DOI: 10.26907/0021-3446-2019-3-19-31 (In Russian)
  3. Rosenfeld B. A. Neyevklidovy prostranstva [Non-Euclidean spaces]. Moscow, Nauka, 1969 (In Russian)
  4. Alexandrov P. S. Kurs analiticheskoy geometrii i lineynoy algebry [Course of analytic geometry and linear algebra]. Moscow, Nauka. 1979 (In Russian)
  5. Muminov K. K. Equivalence of paths with respect to the action symplectic group. Russian Mathematics (Izvestiya VUZ. Matematika), 2002, 7, 27–28 (In Russian)
  6. Muminov K. K. Equivalence of paths and surfaces with respect to the action of the pseudoorthogonal group, Uzbek Math. Journal, 2005, 7, 35–43 (In Russian)
  7. Muminov K. K. Equivalence of curves with respect to the action of the symplectic group, Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 6, 31–36 (In Russian)
  8. Muminov K. K., Gafforov R. A. Equivalence of paths with respect to the action group of
    special pseudoorthogonal group, Uzbek Math. Journal, 2010, no. 4. pp. 135–141 (In Russian)
  9. Muminov K. K., Gafforov R. A. Equivalence of finite path systems with respect to the action of a special pseudo-orthogonal group. Scientific notes of the Taurida National University. V. I. Vernadsky. Series Physical and mathematical sciences, 2011, 24(63):1, 90-100 (In Russian)
  10. Khadjiev Dj., Peksen O. On invariants of curves in centro-affine geometry, J. Math. Kyoto Univ. (JMKYAZ), 2004, 44:3, 603–613. DOI: 10.1215/kjm/1250283086
  11. Khadjiev Dj., Peksen, O. The complete system of global integral and differential invariants for equi-affin curves, Differential Geometry and its Applications, 2004. vol. 20, no. 2. pp. 167–175. DOI: 10.1016/j.difgeo.2003.10.005
  12. Chilin V. I., Muminov K. K. The complete system of differential invariants of a curve in pseudo-euclidean space. Din. Sist., 2013, 3(31):1-2, 135–149.
  13. Chilin V. I., Muminov, K. K. The classification of paths in the Galilean geometry, Taurida Journal of Computer Science Theory and Mathematics, 2017, 1. 95–111.
  14. Chilin V. I., Muminov K. K. Equivalence of Paths in Galilean Geometry, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 2018, no. 144. pp. 3–16. DOI: 10.1007/s.10958-020-04691-7
  15. Kolchin E.R. Differential Algebra and Algebraic Groups. New York-London. Academic Press. 1973.
  16. Khadjiev D. J. Prilozheniye teorii invariantov k differentsial’noy geometrii krivykh [The application of theory invariants to differential geometry of curves]. Tashkent. FAN. 1998.

Gafforov Rahmatjon Abdukaxxorovich – Teacher of the Faculty of mathematics and informatics Fergana State University, Fergana, Republic of Uzbekistan, ORCID 0000-0002-4589-5421.


Muminov Kobiljon Kodirovich – D. Sci. (Phys. & Math.), Professor, Faculty of Mechanics and Mathematics, National University of Uzbekistan, Tashkent, Republic of Uzbekistan, ORCID 0000-0002-2445-749X.