Bulletin KRASEC. Phys. & Math. Sci. 2016. V. 13. no. 2. pp. 5-9. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2016-13-2-5-9

MATHEMATICS

MSC 34L99

ON THE ASYMPTOTICS FOR A FUNDAMENTAL SOLUTION OF AN ORDINARY FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

L. Kh. Gadzova

Institute of Applied Mathematics and Automation, 360000, Nalchik, Shortanova st., 89A, Russia.
E-mail: macaneeva@mail.ru

The question of the asymptotics of a fundamental solution of a linear ordinary differential equation of fractional order with constant coefficients for large values of spectral parameter l; was under investigation.

Key words: asymptotic expansion, operator of fractional differentiation, Caputo derivative, fundamental solution.

References

  1. Nakhushev A.M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Moscow. Fizmatlit. 2003. 272 p.
    2. Barrett J.H. Differential equations of non-integer order. Canadian J.Math. 1954. vol 6. no. 4. pp. 529–541.
    3. Dzhrbashyan M.M., Nersesyan A.B. Drobnye proizvodnye i zadacha Koshi dlya differentsial’nykh uravneniy drobnogo poryadka [Fractional derivatives and Cauchy problem for differential equations of fractional order. Izvestiya Akademii nauk Armyanskoy SSR. Matematika. 1968. vol 3. no. 1. pp. 3–28.
    4. Pskhu A.V. K teorii zadachi Koshi dlya lineynogo obyknovennogo differentsial’nogo uravneniya drobnogo poryadka [To the theory of Cauchy problem for linear ordinary differential equation of fractional order]. Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk – Reports of the Adyghe (Circassian) International Academy of Sciences. 2009. vol. 11. no.1. pp. 61–65.
    5. Pskhu A.V. Nachal’naya zadacha dlya lineynogo obyknovennogo differentsial’nogo uravneniya drobnogo poryadka [Initial problem for linear ordinary differential equation of fractional order]. Matematicheskiy sbornik – Sbornik: Mathematics. 2011. vol. 202. no. 4. pp.111–122.
    6. Dzhrbashyan M.M. Integral’nye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti [Integral transformations and presentation of functions in a complex domain]. Moscow. Nauka. 1966. 672 p.
    7. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. Elsevier, Amsterdam North-Holland Math. Stud. 2006. vol. 204.
    8. Gadzova L.Kh. Zadachi Dirikhle i Neymana dlya obyknovennogo differentsial’nogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami [Dirichlet and Neumann problems for ordinary differential equation of fractional order with constant coefficients]. Differentsial’nye uravneniya – Differential Equations. 2015. vol. 51. no. 12. pp. 1580–1586.
    9. Pskhu A.V. Fundamental’noe reshenie obyknovennogo differentsial’nogo uravneniya kontinual’nogo poryadka [Fundamental solution of an ordinary differential equation of continual order]. Matematicheskoe modelirovanie i kraevye zadachi [Mathematical modeling and boundary-value problems]. 2007. vol I. 3. pp. 153–156
    10. Pskhu A.V. Fundamental’noe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka [Fundamental solution of diffusion-wave equation of fractional order]. Izvestiya RAN. Seriya matematicheskaya –Izvestiya: Mathematics. 2009. vol. 73. no. 2. pp. 141–182.
    11. Pskhu A.V. Zadacha Koshi dlya uravneniya diffuzii s operatorom drobnogo differentsirovaniya diskretno-raspredelennogo poryadka [Cauchy problem for diffusion equation with a fractional differentiation operator of fractional differentiation of discretely distributed order]. Doklady Adygskoy (Cherkesskoy)
    Mezhdunarodnoy akademii nauk – Reports of the Adyghe (Circassian) International Academy of Sciences. 2010. vol. 12. no. 1. pp. 69–72.
    12. Gadzova L.Kh. Obobshchennaya zadacha Dirikhle dlya lineynogo differentsial’nogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami [Generalized Dirichlet problem for linear differential equation of fractional order with constant coefficients]. Differentsial’nye uravneniya – Differential Equations. 2014. vol. 50. no. 1. pp. 121–125.
    13. Gadzova L.Kh. K teorii kraevykh zadach dlya differentsial’nogo uravneniya drobnogo poryadka s proizvodnoy Kaputo [To the theory of boundary-value problems for differential equation of fractional order with Caputo derivative]. Differentsial’nye uravneniya – Differential Equations. 2014. vol.16. no. 2. pp. 34–40.
    14. Gadzova L.Kh. O razreshimosti zadachi Dirikhle dlya obyknovennogo differentsial’nogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami [On the solvability of Dirichlet problem for ordinary differential equation of fractional order with constant coefficients]. Differentsial’nye uravneniya – Differential Equations. 2015. vol. 17. no. 2. pp. 25–28.
    15. Gadzova L.Kh. Zadacha Dirikhle dlya obyknovennogo differentsial’nogo uravneniya drobnogo poryadka [Dirichlet problem for ordinary differential equation of fractional order]. Differentsial’nye uravneniya– Differential Equations. 2013. vol. 15. no. 2. pp. 36–39.
    16. Wright E.M. On the coefficients of power series having exponential singularities. J. London Math. Soc. 1933. vol. 8. no. 29. pp. 71–79.
    17. Pskhu A.V. Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Partial differential equation of fractional order]. Moscow. Nauka. 2005. 199 p.
    18. Vygodskiy M.Ya. Spravochnik po elementarnoy matematike [Reference book on elementary mathematics]. Moscow. AST: Astrel’. 2006. 509 p.

For citation: Gadzova L. Kh. On the asymptotics for a fundamental solution of an ordinary fractional order differential equation with constant coefficients. Bulletin KRASEC. Physical and Mathematical Sciences 2016, vol. 13, no 2, 5-9. DOI: 10.18454/2313-0156-2016-13-2-5-9

Original article submitted: 30.04.2016

Gad

Gadzova Luiza Khamidbievna – scientific researcher of Dep. Fractional Calculus, Institute of Applied Mathematics and Automation Nalchik, Republic of Kabardino-Balkaria, Russia.

Download  article Gadzova L.Kh.