Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 41. no. 4. pp. 89–106. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

MSC 41A99

Research Article

Modeling and analysis of ionospheric parameters based on generalized multicomponent model

N. V. Fetisova, O. V. Mandrikova

Institute of Cosmophysical Research and Radiowave Propagation FEB RAS, 684034, Kamchatka region, Paratunka, Mirnaya Str.7


The results of modeling and analysis of ionospheric parameters during magnetic storms in 2017-2021 are presented. We used the critical frequency variations of the ionospheric F2 layer (foF2 ) (according to the ionosonde data from Paratunka site, Kamchatka peninsula, IKIR FEB RAS). The modeling was based on a generalized multicomponent model of ionospheric parameters (GMCM) developed by the authors. GMCM allows us to study in detail the dynamics of ionospheric parameters during disturbed periods. The GMCM identification is based on the combination of wavelet transform and autoregressive models (ARIMA models). The model describes three classes of anomalies characterizing strong (class 3), moderate (class 2) and weak (class 1) ionospheric disturbances. The ionospheric parameter dynamics was studied with respect to the strength of a geomagnetic disturbance (weak, moderate and strong intensity events were considered). On the basis of the modeling, we detected ionospheric anomalies of various intensity and duration. On the eve of moderate and strong magnetic storms, the fact of a high frequency of the pre-increase effect in the ionosphere was noted. It has an important applied significance.

Key words: ionospheric disturbances, wavelet-transform, autoregressive model.

DOI: 10.26117/2079-6641-2022-41-4-89-106

Original article submitted: 02.12.2022

Revision submitted: 06.12.2022

For citation. Fetisova N. V., Mandrikova O. V. Modeling and analysis of ionospheric parameters based on generalized multicomponent model. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 41: 4, 89-106. DOI: 10.26117/2079-6641-2022-41-4-89-106

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (

© Fetisova N. V., Mandrikova O. V., 2022

Funding. The work was carried out according to the Subject АААА-А21-121011290003-0 “Physical processes in the system of near space and geospheres under solar and litospheric influences” IKIR FEB RAS.


  1. Afraymovich E., Perevalova N. GPS-monitoring Verhnej Atmosfery Zemli [GPS Monitoring of the Earth’s Upper Atmosphere]. Irkutsk, GU NU RVKh VSNTs SO RAMN, 2006, 480 (In Russian).
  2. Danilov A. D. F-2 region response to geomagnetic disturbances, Journal of Atmospheric and Solar-Terrestrial Physicsi, 2001, 63, 441–449.
  3. Danilov A. D. Ionospheric F-region response to geomagnetic disturbances, Adv. Space Res., 2013, 52:3, 343–366.
  4. Nakamura M., Maruyama T., Shidama Y. Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan, J. Natl. Inst. Inf. Commun. Technol., 2009, 56, 391–406.
  5. Chernogor L. F., Rozumenko V. Ò. Earth – atmosphere – geospace as an open nonlinear dynamical system, Radio Phys. Radio Astron., 2008, 13:2, 120–137.
  6. Bilitza D., Reinisch B. International reference ionosphere 2007: improvements and new parameters, Adv. Space Res., 2008, 42:4, 599–609. DOI: 10.1016/j.asr.2007.07.048.
  7. Solomentsev D. V., Titov A. A., Khattatov B. V. Three-dimensional assimilation model of the ionosphere for the European region, Geomagn. Aeron., 2013, 53:1, 73–84. DOI: 10.1134/S0016793212060114.
  8. Tebabal A., Radicella S. M., Nigussie M., Damtie B., Nava B., Yizengaw E. Local TEC modelling and forecasting using neural networks, J. Atmos. Sol. Terr. Phys., 2018, 172, pp. 143–151. DOI: 10.1016/j.jastp.2018.03.004.
  9. Watthanasangmechai K., Supnithi P., Lerkvaranyu S., Tsugawa T., Nagatsuma T., Maruyama T. TEC prediction with neural network for equatorial latitude station in Thailand, Earth Planets Space, 2012, 64:6, 473–483.
  10. Mikhailov A., Morena B., Miro G., Marin D. A method for foF2 monitoring over Spain using the El Arenosillo digisonde current observations, Ann. Geophys., 1999, 42:4, 683-689. DOI: 10.4401/ag-3748.
  11. Knyazeva M. A., Namgaladze A. A., Beloushko K. E. Field-aligned currents influence on the ionospheric electric fields: modification of the upper atmosphere model, Russ. J. Phys. Chem., 2015, 9:5, 758763. DOI: 10.1134/ S1990793115050206.
  12. Shubin V. N., Karpachev A. T., Telegin V. A., Tchybulya K. G. Global model SMF2 of the F2-layer maximum height, Geomagn. Aeron., 2015, 55:5, 609622. DOI: 10.1134/S001679321505014X.
  13. Mandrikova O. V., Fetisova N. V., Polozov Y. A., Solovev I. S., Kupriyanov M. S. Method for modeling of the components of ionospheric parameter time variations and detection of anomalies in the ionosphere, Earth Planets Space, 2015, 67:1, 131-146. DOI: 10.1186/s40623-015-0301-4.
  14. Mandrikova O., Polozov Yu., Fetisova N., Zalyaev T. Analysis of the dynamics of ionospheric parameters during periods of increased solar activity and magnetic storms, J. Atmos. Solar-Terr. Phys., 2018, 181, 116-126. DOI: 10.1016/j.jastp.2018.10.019.
  15. Mandrikova O., Fetisova N. Modeling and analysis of ionospheric parameters based on multicomponent model, J. Atmos. Solar-Terr. Phys., 2020, 208, 105399. DOI: 10.1016/j.jastp.2020.105399.
  16. Mandrikova O, Fetisova N, Polozov Y. Hybrid Model for Time Series of Complex Structure with ARIMA Components, Mathematics, 2021, 9:10, 1122. DOI: 10.3390/math9101122.
  17. Mallat S. A Wavelet Tour of Signal Processing: 3rd ed. London, Academic Press, 1999, 637.
  18. Box G., Jenkins G. Time Series Analysis: Forecasting and Control. San Francisco, Holden
    Day, 1970, 537.
  19. Buresova D., Lastovicka J. Pre-storm electron density enhancements at middle latitudes, J. Atmos. Sol. Terr. Phys., 2008, 70, 1848–1855. DOI: 10.1016/j.jastp.2008.01.014.
  20. Loewe C., Prolss G. Classification and mean behavior of magnetic storms, J. Geophys. Res.,
    1997, A102, 14209–14213. DOI: 10.1029/96JA04020.
  21. Abdu M. A. Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Sol. Terr. Phys., 1997, 59, 1505–1519. DOI: 10.1016/S1364-6826(96)00152-6.
  22. Blagoveshchensky D. V., Kalishin A. S. Increase in the critical frequency of the ionospheric F region prior to the substorm expansion phase, Geomagn. Aeron., 2009, 49, 200–209. DOI: 10.1134/S0016793209020091.
  23. Danilov A. D., Konstantinova A. V. Ionospheric precursors of geomagnetic storms. 1. A review of the problem, Geomagn. Aeron., 2019, 59:5, 554–566. DOI: 10.1134/S0016793219050025.
  24. Konstantinova A. V., Danilov A. D. Ionospheric precursors of magnetic storms. 2. Analysis of Slough station data, Geomagn. Aeron., 2020, 60, 311–317. DOI: 10.1134/S001679322003010X.

Fetisova Nadezhda Vladimirovna – PhD (Tech.), Researcher of System Analysis Laboratory at the Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Kamchatka region, Russia, ORCID 0000-0001-5769-4726.

Mandrikova Oksana Viktorovna – D.Sci. (Tech.), Professor, Head of System Analysis Laboratory at the Institute of Cosmophysical Research and Radio Wave Propàgation FEB RAS, Kamchatka region,Russia, ORCID 0000-0002-6172-1827.