Bulletin KRASEC. Phys. & Math. Sci, 2015, V. 11, №. 2, pp. 85-92. ISSN 2313-0156

Back to contents

DOI: 10.18454/2313-0156-2015-11-2-85-92

MSC 37C70


R.I. Parovik¹²

¹Institute of Cosmophysical Research and Radio Wave Propagation, Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia.
²Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia.

E-mail: romanparovik@gmail.com.

The paper considers explicit finite-difference schemes for a fractional oscillator. The questions of approximation, stability and convergence of these schemes are under investigation.

Key words: finite-difference scheme, convergence, stability.


  1. Parovik R.I. Numerical analysis of some oscillation equations with fractional order derivatives. Bulletin KRASEC. Physical and Mathematical Sciences, 2014, vol. 9, no. 2, pp. 34–38.
    2. Parovik R.I. Matematicheskoe modelirovanie ereditarnogo ostsillyatora [Mathematical simulation of heredity oscillator]. Komp’yuternye issledovaniya i modelirovaniya – Computer Research and Modeling, 2015, V. 7, No. 5, pp. 1002–1023.
    3. Momani S., Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals. 2007. Vol. 31, no. 5. P. 1248–1255.
    4. Petras I. Fractional-Order Nonlinear Systems. Modeling, Analysis and Simulation. Beijing and Springer Verlag Berlin Heidelberg: Springer, 2011. 218 p.
    5. Oldham K. B., Spanier J. The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. London: Academic Press, 1974. 240 p.
    6. Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals. 1996. Vol. 7, no. 9. P. 1461–1477.
    7. Coimbra C.F.M. Mechanics with variable-order differential operators. Annalen der Physik. 2003. Vol. 12, no. 11-12. P. 692–703.
    8. Sheng H., Sun H.G., Coopmans C. et al. A physical experimental study of variable-order fractional integrator and differentiator. The European Physical Journal Special Topics. 2011. Vol. 193, no. 1. P. 93–104.
    9. Shichang Ma, Yufeng Xu, Wei Yue. Numerical solutions of a variable-order fractional financial system. Journal of Applied Mathematics. 2012.
    10. Meilanov R. P. K teorii fil’tratsii v poristykh sredakh s fraktal’noi strukturoi [To the theory of filtration in porous mediums with fractal structure]. Pis’ma v ZhTF – Technical Physics Letters, 1996, V. 22, No. 23. pp. 40–43.
    11. Sun H. G., Chen W., Wei H., Chen Y. Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. The European Physical Journal Special Topics. 2011. Vol. 193, no. 1. P. 185–192.
    12. Yufeng Xu, Vedat Suat Erturk. A finite difference technique for solving variable-order fractional integro-differential equations. Bulletin of the Iranian Mathematical Society. 2014. Vol. 40, no. 3. P. 699–712.
    13. Samarskii A.A. Teoriya raznostnykh skhem [Theory of difference schemes], Moscow, Nauka, 1977, 656 p.

For citation: Parovik R.I. Finite-difference schemes for fractal oscillator with a variable fractional order. Bulletin KRASEC. Physical and Mathematical Sciences 2015, vol. 11, issue 2, 85-92. DOI: 10.18454/2313-0156-2015-11-2-85-92.

Original article submitted: 15.11.2015


    Parovik Roman Ivanovich – Ph.D. (Phys. & Math.), Dean of the Faculty of Physics and Mathematics Vitus Bering Kamchatka State University, Senior Researcher of Lab. Modeling of Physical Processes, Institute of Cosmophysical Researches and Radio Wave Propagation FEB RAS.

Download article Parovik R.I.