Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 41. no. 4. pp. 178–190. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

MSC 78A40

Research Article

Statistical relationship between whistlers and sprites according to AWDANET and WWLLN data

E. I. Malkin, E. A. Kazakov, D. V. Sannikov, N. V. Cherneva, L. S. Marchenko, G I. Drugin

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS 684034, Paratunka, Russia

E-mail: Malkin@ikir.ru

According to the data of the international whistler detection network AWDANET, the global network for detecting pulsed lightning discharges WWLLN and the VLF direction finder of the IKIR FEB RAS, a statistical analysis was carried out to identify whistler sources. Pairs of discharges with a repetition time interval of less than 100 ms and a distance between them of less than 40 km were excluded from the WWLLN database. The resulting time series showed a high degree of correlation with the time series of registered whistlers in the AWDANET data.

Key words: lightning discharge, whistler, sprite, ionosphere.

DOI: 10.26117/2079-6641-2022-41-4-178-190

Original article submitted: 06.12.2022

Revision submitted: 07.12.2022

For citation. Malkin E. I., Kazakov E. A., Sannikov D. V., Cherneva N. V., Marchenko L. S., Drugin GI. Statistical relationship between whistlers and sprites according to AWDANET and WWLLN data. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 41: 4, 178-190. DOI: 10.26117/2079-6641-2022-41-4-178-190

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Malkin E. I. et. al., 2022

Funding. The research was carried out within the framework of the state task of IKIR FEB RAS on the topic AAAA-A21-121011290003-0

References

  1. Antel C., Collier A. B., Lichtenberger J., Rodger C. J. Investigating Dunedin whistlers using volcanic lightning, Geophysical Research Letters, 2014, 41(13), 4420–4426 DOI: 10.1002/2014GL060332.
  2. Collier A. B., et. al. Global lightning distribution and whistlers observed at Dunedin, New Zealand, Ann. Geophys, 2010, 28, 499–513 DOI: 110.5194/angeo-28-499-2010.
  3. Holzworth R. H., Winglee R. M., Barnum B. H., Li Y., Kelley M. C. Lightning whistler waves in the high-latitude magnetosphere // J. Geophys. Res., 1999, 104(A8), 17369–17378, DOI: 10.1029/1999JA900160.
  4. Koronczay, et al. The source regions of whistlers, Journal of Geophysical Research: SpacePhysics, 2019, 124, 5082–5096, DOI: 10.1029/2019JA026559.
  5. Lichtenberger J., Ferencz C., Bodnar L., Hamar D., Steinbach P. Automatic whistler detector and analyzer system: Automatic whistler detector, Geophys. Res., 2008, 113, DOI:10.1029/2008JA013467.
  6. Lyons W. A. Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems, Geophys. Res., 1996, 101.
  7. Reising S. C., Inan U. S., Bell T. F. ELF sferic energy as a proxy indicator for sprite occurrence, Geophys. Res. Lett., 1996, 26(7), 987-990, DOI: 10.1029/1999GL900123.
  8. Storey L. R. O. An investigation of whistling atmospherics, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1953, 246:908, 113–141. DOI: 10.1098/rsta.1953.0011
  9. Winkler J. R. The cloud–ionosphere discharge: A newly observed thunderstorm phenomenon, Proc. Natl. Acad. Sci. USA, 1997, 94, 10512–10519.
  10. Druzhin G. I., Pukhov V. M, Sannikov D. V., Malkin E. I. VLF lightning direction finder, Vestnik KRAUNC. Fiz.-mat. nauki. 2019, 27: 2, 95-104. DOI: 10.26117/2079-6641-2019-27-2-95-104 (In Russian).
  11. Sivokon V.P., Cherneva N. V., Drugin G. I., Sannikov D. V. Amplitudnaya modulyaciya vistlerov[Whistler amplitude modulation], Optika atmosfery i okeana[Atmospheric and ocean optics], 2014, 27:2, 167-172 (In Russian).
  12. Shcherbakov R. N. «Nebroskij, no userdnyj genij». K 150-letiyu so dnya rozhdeniya CHarl’za Vil’sona [«Inconspicuous but diligent genius.»To the 150th anniversary of the birth of Charles Wilson], Vestnik Rossijskoj akademii nauk [Bulletin of the Russian Academy of Sciences], 2019, 89:6, 629-636 (In Russian).

Malkin Evgeny Ilich — junior researcher laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0001-8037-1335


Kazakov Evgeny Anatolevich — lead programmer laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0001-7235-4148.


Sannikov Dmitriy Victorovich — lead engineer laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0002-1369-9522


Cherneva Nina Volodarovna — PhD (Phys. & Math.), Scientific Secretary, Leading Researcher laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0002-6440-7569.


Marchenko Ludmila Sergeevna — leading specialist of the scientific secretariat Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0003-3634-2443.


Drugin Gennady Ivanovich — PhD (Phys. & Math.), Leading Researcher laboratory of electromagnetic propogation Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0002-1009-1044.