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Abstract. Previously, a mathematical model for the following problem was considered. On
a part of the border of the right rectangle there is a heater with controlled temperature.
It is required to find such a mode of its operation that the average temperature in some
region reaches some given value. In this paper, we consider a boundary control problem
associated with a parabolic equation on a right rectangle. On the part of the border of the
considered domain, the value of the solution with control parameter is given. Restrictions
on the control are given in such a way that the average value of the solution in some part of
the considered domain gets a given value. The auxiliary problem is solved by the method
of separation of variables, while the problem in consideration is reduced to the Volterra
integral equation. In addition, the definition of the generalized solution of the given initial-
boundary problem is given in the article and the existence of such a solution is proved.
The solution of Volterra’s integral equation was found by the Laplace transform method
and the existence theorem for admissible control functions was proved. It is also shown
that the initial value of the admissible control function is equal to zero using the change of
variable in the integral equation. The proof of this comes from the fact that the kernels of
the integral equations are positive and finite, and the system has a single-valued solution.
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3ajiava ynpaBJ/ieHUs IIPOIECCOM HarpeBa TOHKOM IJIACTUHBI

®. H. /lexonos*

Hamanrauckuil rocypapCcTBEHHBIN yHUBepcuTeT, Y3b6ekuctan, 160136, r. Hamanran,
ya. B. Mammpa6, 1A.

AnHoTanusi. Paree 6p1na paccMOTpeHa MaTeMaTUYeCKasi MOAEAD CAeAyIomell 3aaauu. Ha gyacTu rpasHuIs
IIPaBOTO IIPSIMOYT'OABHFKA PACIIOAOXKEH HArpeBaTeAb C PEryAUpyeMoil TeMmmeparypoil. Tpebyercs HaTy
TAaKOM PEXXUM €ero paboTel, YTOOBI CPEAHSISI TEMIEpPAaTypa B KakKOM-AMOO pailoHe AOCTUrasa HEKOTOPOTO
33AaHHOTO 3HadeHUsl. B paHHOM paboTe paccMaTpMBaeTCs: 3ajada MPAHUYHOTO YIIPABAEHUS, CBSI3aHHAS C
napaboAMYeCKUM ypPaBHEHUEM Ha IPABOM IPSIMOYToAbHUKe. Ha YacTu rpaHunsl paccMaTpuBaeMoi obaacTu
YKa3aHO 3HAYEHUE DPEIleHUsI C YIPABASIONUM IapamMeTpoM. OrpaHMYeHUsI Ha YIPaBAEHUE 33AaI0TCSI
TakuM obpasoM, YTOOBI CpeaAHee 3HAYEHME PEIIeHWs] B HEKOTOPOM dYacTM paccMaTpuBaeMoil obaacTu
IPUHUMAAO 33AAHHOE 3HAYeHMe. BcrioMoraTeAbHast 3apada PELIaeTCsI METOAOM PA3AEAEHUS IIEPEMEHHEIX, &
paccMaTpuBaeMasi 33Aa49a CBOAUTCSI K MHTErPaAbHOMY ypaBHeHUIO BoabTeppa. Kpome Toro, B cTaThe AaeTcst
ompepeAeHNE ODODIIEHHOIO PEIIEHNST AAHHON HAavYaAbHO-KPAeBOM 33Aa4Ml U AOKA3BIBAETCS CYIECTBOBAHUE
Takoro pemeHusi. MeTopoMm mpeobpasoBaHusi Jamaaca HafAEHO PEIIEHWE WHTErPAABHOIO yPaBHEHUSI
BoabTeppa ¥ pAOKa3aHa TeopeMa CYIIECTBOBAHUS AONYCTUMEIX YIPABASIIOIIUX PYHKIUA. Tak>Ke IOKa3aHO,
YTO HAYAABHOE 3HAYEHWE AOIYCTUMON (DYHKIIAY YIPABACHUS PABHO HYAIO C IIOMOIIBIO 3aMEHEI IEPEMEHHOMN
B UHTErpaAbHOM ypPaBHEHUHU. J\OKa3aTEABCTBO STOrO UCXOAUT U3 TOr'O, UTO SIAPA UHTErPAABHBIX YPaBHEHUN

IIOAOKUTENABHBI I KOHEYHBI, a CUCTEMAa UMEET OAHO3HAYWHOE PEIIEHUE.

Karoueswvie caosa: napaEOJLuv.emcoe YypasHeHUE, CUCMEMA UHME2PANLDHLT ypasueuuﬁ, HAYANDHO-

xpaesas 3adava, donycmumoe ynpasaerue, npeobpasosarue Jansaca.
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Introduction

Consider the following mathematical model of the heat conduction process along
the domain Q ={(x,y) eR?:0<x<a,0<y<b}:

ut:uxx+uyy, (X,y) EQ, t>0 (1)

with boundary value conditions
U= =@yl (t), uk=a=Vy)u2(t), 0<x<a, (2)
uly—0 =0, uly—, =0, 0<y<b, t>0 (3)

and initial value condition
u(x,y,0) =0, 0<x<a, 0<y<h. (4)

Let M; > 0 be some given constants. We say that the functions p;(t) are admaissible
control, if this functions are smooth on the half-line t > 0 and satisfies the constraints:

Set

©(0)=@(b) =0, Y(O)=Y(b)=0, @rb2—@21#0, 0<y<b. (6)
Consider the following eigenvalue problem
AXnm (X%, Y) +F Amn Xam(x,y) =0, 0<x<a, 0<y<b,
with boundary conditions
Xnm(x,gﬂaQ =0, 0<x<a, 0<y<hb.

Then we have (see, [21])

Anm = (n7/a)? + (mﬁ/b)z, Xnm(x,y) =sin ? sin mgry’

nm=12.. (7)

In the present work we consider the following problem:

Problem A. For the given functions 0;(t) Problem A consists in looking for the
admissible controls p;(t) such that the solution u(x,y,t) of the initial-boundary value
problem (1)-(4) exists and for all t > 0 satisfies the equations

4

ab
abJ‘[XH(X)y)u(X)y)t)dXd‘y:ej(t)) j:]>2° (8)
00
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We recall that the time-optimal control problem for partial differential equations
of parabolic type was first investigated in [7] and [8]. More recent results concerned
with this problem were established in [1]- [4], [6], [11]- [16]. Detailed information on the
problems of optimal control for distributed parameter systems is given in [9] and in the
monographs [10], [17] and [19].

General numerical optimization and optimal boundary control have been studied in
a great number of publications such as [5]. The practical approaches to optimal control
of the heat equation are described in publications like [20].

System of the Integral Equations

Let B be the Banach space and T> 0. Denote by C([0,T] — B) the Banach space of
all continuous maps u: [0,T] — B with the norm ||u|| = O.'r£1a<xT|u(t)|. By symbol W;(.Q)
<t<

we denote the subspace of the Sobolev space W;(Q_) formed by functions, whose trace
is equal to zero. Note that since WQ(Q) is closed, then the sum of a series of functions
from vag (Q)) converging in metric W;(Q) also belongs to W;(Q).

Definition. When we say a solution of problem (1)-(4), we mean function u(x,y,t)
represented in the form

a—Xx

by, 8) = () wa(8) + = (@(y) w (0 —(y) wa(t) ) ~v(x,y, 1),

where the function v(x,y,t) is a generalized solution from the class C([0,T] — WQ(Q))
of the problem

a—x

vi(x%, Yy, t) —Av(x,y,t) = (y) uy(t) +

(v a0+ 22 ("l v el
with boundary value conditions
v(x,y,t) [bo=0
and initial value condition
v(x,y,0) =0, 0<x<a, 0<y<hb.

Consequently, we have (see, [21], [22])

t
2X
V(X)y)t) = J Z e_}‘nm(t—s}wx
0

n,m=1

mr7t

(b (6) = (Mt (s) () [om 3] = (1) Whmia(s)] ) s,

where Anm, Xmn defined by (7).
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Note that the class C([0,T] — VNV;(Q)) is a subset of the class W;(Q) considered in
the monograph [18] in order to define a problem with homogeneous boundary conditions.
Thus, the generalized solution introduced above is also a generalized solution in the sense
of monograph [18]. However, unlike a solution from the class W; (Q), which is guaranteed
to have a trace of almost all t € [0,T], a solution from the class C([0,T] — W;(Q))
continuously depends of t € [0, T] in the metric [,(Q).

Proposition. Let p(t), uo(t) are smooth functions on the half-line t > 0. Then the
function

t
27 > - -
u(x>y)t) = ?JH](S) Z ﬂ(Panm(X>y)e Anm (t=s) ds—
0 n,m=1
t oo
27 N N
_E PLZ(S) Z (_]) Tl‘ll)mxnm(x)y)e nm dS, (9)
0 n,m=1

is the solution of the initial-boundary value problem (1)-(4).

Proof. We rewrite the solution to the problem in the form

mr7t

)2 [ 1 (8) — (1) pa(s)] ) dis.
b

We show that function v(x,y,t) belongs to class C([0,T] — W;(Q)). For this, it is
enough to prove that the gradient of this function, taken in (x,y) € Q, continuously
depends on t € [0, T] in the norm of the space [,(Q). According to Parseval’s equality,
the norm of this gradient is

< (cpm 4 (8) = (=)™ 1h(5) + (

2

IV0IE, 0= 2_ <5 PmmBan(®)
n,m=1
where
t
— _ mrt, 2
bumlt) = [ g (1 (5) 4+ () pals) )

t
+ J e Mnm(ts) (L)l <uﬁ(3) + (?)Zm(s)) ds.
0

From the Cauchy-Bunyakovsky inequality, we obtain the following estimate

C1 m2 C3 mz)
brm ()] < +C + +C <
B )r_|<pm|(¢m zxnm) |xpm|(¢m ek

<C m ([@ml+ml)

>~ L5
Vv Anm ’
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From (5), we write

b
2 ny ., 2 b mmy [V=°
Pm = EJ@(H)SIH 5 dy = —bcp(y)ﬁcos b e +
0
2 0 2 0 b
: mmy 2 [ Ty . )
+EJ") (y)cos o dy = mﬂjcp (y)cos o dy = ——Pm
0 0
and
Zb b
Yy
Y = EJII)(U)SIH dy = Etll){“
0

Consequently, we have

m? (¢ |+|ll) I)
||VVH%Z( <G Z = =

n,m=1

2 o0
2 2 2 2
< ZCOZ — Z <|<P1'n| + [Pl > =C (”(p/HLz[O,b} + Hll)/HLz[o,b])-
m=

U
From the condition (8) and the solution of the problem (1)-(4), we may write

4

% (t)= ab

O———n

b
JXU(X)U)u(X»U»t)dXdy -
0

t ab

4 2

——T[J s)ds Z nQme nmit=s JJXU X, Y) Xnm(x,y) dx dy—
0 00

ab a?
n,m=1
47 t 0o ab
7 N
e malsras Y 1 e [ 0,) Xm0,y dedy =
0 n,m=1 00
2 ( 2 (
T e i s (e
:gj@je Myt S}M(S)ds-i-gjlbje M), (s) ds.
0

Set
27 Ay 27 . .
Aj(t) = 2% Mt By(t) = ?q’j e Mt j=1,2,

where @;,1; defined by (5).
Then we get system of the integral equations

t t
JAj(t—s) u1(s)ds+JBj(t—s) wp(s)ds=0;(t), t>0, j=1,2.
0 0

74

(10)

(11)

(12)



Control problem concerned ... ISSN 2079-6641

Denote by W(M,) the set of function 0 € W%(—oo,—koo), 0(t) =0 for t <0 which
satisfies the condition

181wz (r,) < Mo- (13)

Theorem. There exists Mg > 0 such that for any functions 0; € W(My) the

solutions ;(t) of the system (12) exists and satisfies conditions

(D<M, j=1,2.

Proof of the Theorem

For solve the system (12), we use the Laplace transform method. We introduce the

notation
o0

Pl = e Tigtdy, p=prit, B0,
0
Then, we use Laplace transform

00 t [ee) t
gj(p) = ,[ e Pt dtJA]-(t—s)m (s)ds+ J e Pt dtJBj(t—s)uz(s)ds =
0 0 0 0

= A;j(p) i (p) +Bj(p) H2(p). (14)
According to (11), we get
i 2
Ailp) = | Aj(e Ptdt =22 2 15
)= | At van= 72 (15)
0
and -
~ _ 21 s
— t — ) P
By(p) = | Bytoear =5 =12 (16)
0

where oy, 3; defined by (5).
According to the condition (6) @i, — @21 # 0. Consequently, from the system
(14) and (15), (16), we can obtain

2 - 2 ~
p) = L 1 (A2 +p) 3 a” Py (M1 +p) 51(p), (17)

T 2neabi— o1y P C2m b — @1,

and 5 5
- a® @1 (A2+p) ) a® @2 (AM1+p) 81(p)
b

2(p) = 2(p)—
P 2o — o2t 2T 2mer - @2y
Then, when  — 0 from (17) and (18), we obtain the following equalities

(18)

“+o0o
_ a? J ( P71 (A2 +1€) §z(i£)— P2 (A1 +18)
42 J P21 — @1, ©2h1 — @1

i (t) 01 (i&)) ettds,  (19)
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and

8,(i6) — a? @2 (A1 +i&) %
Q12— @2 21— @2y

(1) = a? TO< @1 (A2 +18)

472

0, (Ia)> elttds, (20)

Lemma. Let 0(t) € W(My). Then for the tmage of the function 0(t) the following
nequality

+00
| oI e < el

18 valid.

Proof. We calculate the Laplace transform of a function 0(t) as follows

[e.9]

0(B +if) = J (B+i&)tg(t) dt = —0(t)
0

~(BHig)tt=ee T .

e

- —(B+iEtg/ (1) dt

BIiE |y +B+i£Je (t)dt,
0

then, we get

(B+18)B(B +1E) = Je (B+E)tg/ (1) dt,
0

and for 3 — 0 we have
o0

iE£0(i8) = J e et/ (t) dt.
0
Also, we can write the following equality
00
(1£)20(i&) = J e 9" (1) dt.
0

Then we have
+oo

| BlioRa+ etz <l g, - (21)

Consequently, according to (21) we get the following estimate

400
0E)|(1+E2)
0 14+ 82dE = J —F— <
Ll A8V T+EdE= 1 JTia
o 12 , 7 1 12
< ( J |e(ia)|2(1+az)zda) ( J ]+£2d£) < ClOlwz(r,)- (22)

O
Proof of the Theorem. Note that

Anm+1E = /A +E < (T+Am) VI+E, n,meN.
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According to (19), (20) and Lemma, we can write

+o00

2
a P N
() < H iz -+ 1E1 1B (16)|dE+
H 42 Qb1 —@rg| 2
—00
2 oo P
a 2 o
+ A1 +1El107 (iE)[dE <
42 J‘(lelh—(mll)z i 1)
—00
2C(T+A
<o) waaﬂezuz a6+ & Sl J\/1+52|e1 i£)ldE <
a C]C(]-I-)\]z a CzCU-i—?\]]
< P, 182llwz(r, )+ -, 1811wz (r,) <
2 2
acC;C(T+Aq2) acCy C(T4+ A7)
< M My=M
< ) ot ., 0 1y
and also, we obtain
400
o) < H a A2+ i8]0, (i) dE+
2= @rb2—@ar| :
—00
+oo

A7 +18]107 (1&)]dE <

n a? J ‘ 2
42 P1¥2— @2y

2C3(1+A T4+A
<o) J ViTEmeae s © > J VT+ 86 (i8)dE <
o -
2 2
aC3C(1+A2) acC4C(1+A7)
< 12 182/lwz(r, ) + 42 181llwz (k) <

2 2
aC3C(14+Aq3) aCy C(14+ A7)
< M
- 47 ot 472
It remains to verify the fulfillment of condition p;(0) = 0. For that we rewrite system
(12) as follows:

t t
JAj(s) Ly (t—s)ds—i—JBj(s) wp(t—s)ds=0;(t), j=1,2.
0 0

By differentiating this system, we have
t t

A1 (0) 4 Bi(0)wa(0) + | Aj(s) (£~ ) + [ By{s)wple—s)ds (1), §=1,2.
0 0

Let us tend t — 0 in this correlation. Then, taking into account the conditions

imposed on the functions 0;, and the fact the functions A;(t) and B;(t) are bounded at
the point zero, we obtain the desired equality p;(0) =0. [

7
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Conclusion

In the theory of boundary control of processes described by partial differential
equations, the main problem is to prove the existence of an admissible control parameter.
We considered the problem of boundary management in a rectangular area. The
difference between this problem and the previous works is that 2 different control
functions are considered at the boundary. The existence of such control functions was
proved using the Laplace transform method. In our work, we have chosen eigenfunctions
as weight functions. This made it much easier to find control functions. Based on the
results of the work on the basis of control theory, we can conclude that under certain
conditions for these problems, it is possible to implement boundary control for processes
associated with parabolic type equations.
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