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Introduction

Numerical calculation of integrals of the highly oscillating integrals is one of the
more critical problems on numerical analysis because such integrals are widely used in
science and technology. The following types of the Fourier integrals are also examples
of strongly oscillating integrals for sufficiently large ω:

I[φ,ω] =

1∫
0

e2πiωxφ(x)dx. (1)
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It is known that the Fourier transforms are very important tools and they are used
widely, in particular, in the problems of Computed Tomography (see, for instance [9]).
Since in practice we have finite discrete values of a function, we have to approximately
calculate the Fourier transforms. Therefore, one has to consider the problem of
approximate calculation of the integral with the weight function exp(2πiωx). Initially,
a formula for the numerical integration of the strongly oscillatory functions one of the
non standard numerical integration methods was given by Filon [19].

Subsequently for integrals with different types of highly oscillating functions
many special effective methods such as the Filon-type method, Clenshaw-Curtis-Filon
type method, modified Clenshaw-Curtis method, Levin type methods, generalized
quadrature rule, and Gauss-Laguerre quadrature are developed (see [2, 14, 21, 26] for
full details, for instance, [13, 24] and references therein).

Recently, in the works [6, 7, 8, 25] authors constructed optimal quadrature formulas
for numerical calculation of Fourier integrals in the Sobolev space L(m)

2 and in the
Hilber space W(m,m−1)

2 , and these formulas were applied to approximate reconstruction
of Computed Tomography images. Compared with the optimal quadrature formulas in
non-periodic case constructed in [6], the approximation formula for the periodic case
constructed in the works [7, 17, 18] is much simpler, therefore it is easy to implement
and it costs less computation even though both provide similar performances.

In various Hilbert and Banach spaces of periodic and non-periodic functions, optimal
quadrature formulas have been constructed by many researchers for integral (1) with
ω= 0. The results for this case can be found, for instance, in the books [12, 23, 22] and
the literature in them. In particular, some recent results on optimal quadrature and
interpolation formulas are obtained in the works [1, 3, 5, 15].

In the work [16, pp. 119–142] weighted optimal quadrature and cubature formulas
in the Sobolev space of periodic functions were constructed. In particular, one can get
from these results the optimal quadrature formulas for numerical calculation of the
integral (1). For example, the practical use of these formulas which were constructed in
the Hilbert spaces of non-periodic functions created difficulties in computational work.

Therefore, construction of new optimal quadrature formulas, which are simple in
implementation, in various Hilbert spaces of periodic functions is very important. We
note that we have constructed the optimal quadrature formula in the case m = 1 for
integral (1) with ω = 0 in the paper [10]. In the present work we get the results for
m≥ 2.

Here, we solve the problem of construction of optimal quadrature formula in
the Hilbert space W̃(m,m−1)

2 (0,1] of periodic functions. In the book [23], the optimal
quadrature formulas were constructed in the general case in the space of periodic
functions, and it was proved that the coefficients of the formulas have the form �Ck = h.
Nevertheless the estimation of the error for the optimal formulas was not given. The
main goal of the present work is to find the sharp upper bound for the error of the

optimal quadrature formula constructed in the space W̃2
(m,m−1)

(0,1] of periodic, real-
valued functions.
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We consider the Hilbert space W(m,m−1)
2 [0,1],m ≥ 2 of non-periodic, real-valued

functions φ(x),0 ≤ x ≤ 1, that (m− 1)st order derivative is absolute continuous and
mth order derivative (in the generalized sense) are square integrable, with the inner
product

⟨φ,ψ⟩
W2

(m,m−1) =

∫1
0
(φ(m)(x)+φ(m−1)(x))(ψ(m)(x)+ψ(m−1)(x))dx, (2)

where φ,ψ ∈W(m,m−1)
2 [0,1], and the corresponding norm of the function φ is defined

as follows

∥φ∥
W

(m,m−1)
2

=

 1∫
0

(
φ(m)(x)+φ(m−1)(x)

)2
dx

1/2 .
The last equality is a semi-norm and ∥φ∥ = 0 if and only if φ(x) = Pm−2(x) +de

−x,
where Pm−2(x) is a polynomial of degree (m−2) and d is a constant. Every element of
the space W(m,m−1)

2 is a class of functions that are differ from each other by a linear
combination of any polynomial of degree (m−2) and e−x. The space W(m,m−1)

2 [0,1] is
a quotient space.

Let we denote by W̃(m,m−1)
2 (0,1] the subspace of the space W(m,m−1)

2 [0,1] consisting
of real-valued, 1-periodic functions φ(x), x ∈ (0,1].

In the present paper, we consider the Hilbert space W̃(m,m−1)
2 of 1-periodic, real-

valued functions. Notice that every element of the space W̃2
(m,m−1)

satisfies the following
condition of 1-periodicity

φ(x+β) =φ(x) for x ∈ R and β ∈ Z.

We consider a quadrature formula of the following form

1∫
0

φ(x)dx ∼=

N∑
k=1

Ckφ(xk), (3)

where φ(x) ∈ W̃(m,m−1)
2 , Ck are the coefficients of the quadrature formula and N is

the number of nodes, h = 1/N and xk (0 < x1 < x2 < · · · < xN ≤ 1) are nodes. Since
quadrature formula of the form (1) with equidistant nodes is optimal for the periodic
functions class, we choose the nodes as xk = hk (see [23]).
The error of the quadrature formula (1) is given as follows

(ℓ,φ) =

1∫
0

φ(x)dx−

N∑
k=1

Ckφ(hk)

=

1∫
0

[(
ε(0,1](x)−

N∑
k=1

Ckδ(x−hk)

)
∗ϕ0(x)

]
φ(x)dx, (4)
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where h= 1
N , ε(0,1](x) is the characteristic function of the interval (0,1] , δ is the Dirac

delta-function, ϕ0(x) =
∞∑

β=−∞δ(x−β), * is the convolution operation and

ℓ(x) =

(
ε(0,1](x)−

N∑
k=1

Ckδ(x−hk)

)
∗ϕ0(x), (5)

and it is the periodic error functional of the quadrature formula (1).

The error (2) of the quadrature formula (1) is a linear functional in W̃2
(m,m−1)∗

. It

should be noted that W̃2
(m,m−1)∗

is the conjugate space to the space W̃2
(m,m−1)

and the
conjugate space consists of all periodic functionals which are orthogonal to the unity
[22], i.e.,

(ℓ,1) = 0. (6)

This condition means the exactness of the quadrature formula (1) for any constant and
it can be written as follows

N∑
k=1

Ck = 1. (7)

The absolute value of the error (2) is estimated by the Cauchy-Schwarz inequality as
follows

|(ℓ,φ)|≤ ∥ℓ∥
W̃2

(m,m−1)∗ · ∥φ∥
W̃2

(m,m−1) ,

where

∥ℓ∥
W̃2

(m,m−1)∗ = sup
∥φ∥

W̃2
(m,m−1)=1

|(ℓ,φ)| (8)

is the norm of the error functional (3).
The problem of constructing an optimal quadrature formula of the form (1) is as

follows.
Problem 1. Find the coefficients �Ck that give the minimum value to the quantity

∥ℓ∥
W̃2

(m,m−1)∗, and calculate the following∥∥∥�ℓ∥∥∥
W̃2

(m,m−1)∗ = inf
Ck

∥ℓ∥
W̃2

(m,m−1)∗ .

We note that the coefficients �Ck which are the solution for Problem 1 are called the
optimal coefficients and the quadrature formula (1) with these coefficients is said to
be the optimal quadrature formula in the sense of Sard [11].

Further, in the next sections we solve Problem 1.
The rest of the paper is organized as follows. Section 2 is devoted to calculation

the norm of the error functional and to obtain the system of linear equations for
optimal coefficients which give the minimum value to the norm of the error function. In
section 3 this system is solved and explicit expressions for the coefficients of the optimal
quadrature formula (1) are found. Finally, in Section 4 we calculate the quantity of the
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norm of the error functional (3) that is the sharp upper bound for the error of the
optimal quadrature formula (1).

The norm for the error functional of the quadrature formula

To calculate the norm (5), we use the extremal function ψℓ for the error functional
ℓ (see [22]) that satisfies the following equality:

(ℓ,ψℓ) = ∥ℓ∥
W̃2

(m,m−1)∗ · ∥ψℓ∥
W̃2

(m,m−1) . (9)

Since W̃2
(m,m−1)

is the Hilbert space by the Riesz theorem for the error functional
ℓ for any φ from W̃

(m,m−1)
2 there exists an element ψℓ ∈ W̃

(m,m−1)
2 that satisfies the

equality
(ℓ,φ) = ⟨ψℓ,φ⟩

W̃2
(m,m−1) , (10)

where ⟨ψℓ,φ⟩
W̃2

(m,m−1) is the inner product of the functions ψℓ and φ defined by the

formula (4). In addition, the equality ∥ℓ∥
W̃2

(m,m−1)∗ = ∥ψℓ∥
W̃2

(m,m−1) is fulfilled. So,

taking into account equality (9), we derive

(ℓ,ψℓ) = ∥ℓ∥2
W̃2

(m,m−1)∗ . (11)

Integrating by parts the right-hand side of (10), keeping in mind periodicity of functions
φ, for ψℓ we have

ψ
(2m)
ℓ (x)−ψ

(2m−2)
ℓ (x) = (−1)m · ℓ(x). (12)

Further, we give the main results of this work.

Lemma 1. The solution of equation (12) is the extremal function ψℓ of the error
functional ℓ and it is expressed as

ψℓ(x) = d0−

N∑
k=1

CkGm(x−hk), (13)

where d0 is a constant and

Gm(x) = (−1)m
∑
β ̸=0

e−2πiβx

(2πiβ)2m−(2πiβ)2m−2
. (14)

Proof. The idea of the proof is as follows. For this, we use equation (10). Integrating
by parts its right-hand side, and taking into account that φ and ψ are 1-periodic
functions, we obtain the following

(ℓ,φ) =

1∫
0

(
ψ

(2m)
ℓ (x)−ψ

(2m−2)
ℓ (x)

)
φ(x)dx. (15)
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From equality (15) we get the differential equation (12). We use the Fourier transform to
find a periodic solution of the differential equation (12). To do this, we use the following
properties of the Fourier transforms

F[φ] =

∞∫
−∞
φ(x)e2πipxdx,

F−1[φ] =

∞∫
−∞
φ(p)e−2πipxdp,

F[φ(α)] = (−2πip)αF[φ], (α ∈ N),
F[φ∗g] = F[φ] ·F[g],
F[φ ·g] = F[φ]∗F[g],
F[ϕ0(x)] = ϕ0(p),

where ϕ0(x) =
∞∑

β=−∞δ(x−β).
Applying the Fourier transform to both sides of equation (12) we get

F[ψ
(2m)
ℓ −ψ

(2m−2)
ℓ ] = (−1)mF[ℓ].

Since, the Fourier transform is a linear operator, we have

(
(2πip)2m−(2πip)2m−2

)
F[ψℓ] = (−1)mF

[(
ε(0,1](x)−

N∑
k=1

Ckδ(x−hk)

)
∗ϕ0(x)

]
or (

(2πip)2m−(2πip)2m−2
)
F[ψℓ] = (−1)m

(
F
[
ε(0,1](x)

]
−

N∑
k=1

Cke
2πiphk

)
·ϕ0(p). (16)

Consequently, we can divide both sides of equation (16) by (2πip)2m−(2πip)2m−2. This
division is not uniquely defined. From equation (16) the function F[ψℓ] is defined up to
the term of the form δ(p). Taking into account the above said and the properties of the
delta-function, we get

F [ψℓ(x)] = (−1)m

d0δ(p)+
F
[
ε(0,1](x)

]
−

N∑
k=1
Cke

2πiphk

(2πip)2m−(2πip)2m−2
·
∑
β̸=0

δ(p−β)

 .
Using the property f(x)δ(x− a) = f(a)δ(x− a) of the delta-function, we have the
following

F [ψℓ(x)] = (−1)m

[
d0δ(p)+F

[
ε(0,1](x)

]
·
∑
β̸=0

δ(p−β)

(2πiβ)2m−(2πiβ)2m−2

+

N∑
k=1

Ck
∑
β̸=0

e2πiβhk ·δ(p−β)
(2πiβ)2m−(2πiβ)2m−2

]
.
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Now, applying the inverse Fourier transform to both sides of equation (29) and using
some properties of Fourier transform, after some calculations we have

ψℓ(x) = d0+ε(0,1](x)∗

(−1)m
∑
β̸=0

e−2πiβx

(2πiβ)2m−(2πiβ)2m−2


−

N∑
k=1

Ck

(−1)m
∑
β̸=0

e−2πiβ(x−hk)

(2πiβ)2m−(2πiβ)2m−2


= d0+ε(0,1](x)∗Gm(x)−

N∑
k=1

CkGm(x−hk)

= d0+

∫∞
−∞ ε(0,1](y)Gm(x−y)dy−

N∑
k=1

CkGm(x−hk)

= d0+

∫1
0
Gm(x−y)dy−

N∑
k=1

CkGm(x−hk)

= d0−

N∑
k=1

CkGm(x−hk),

where Gm(x) is defined by equality (14) and it is easy to show that

1∫
0

Gm(x−y)dy= 0.

And thus, Lemma 1 is completely proved.

Simplifying the error functional of the form (3), we can rewrite it in the following
form

ℓ(x) =

∞∑
β=−∞ε(0,1](x)∗δ(x−β)−

N∑
k=1

Ck

∞∑
β=−∞δ(x−hk)∗δ(x−β)

= 1−

N∑
k=1

Ck

∞∑
β=−∞δ(x−β−hk). (17)

The square of the norm for ℓ of the quadrature formula (1) is expressed in terms of
the bilinear form of the coefficients Ck. Indeed, since the space W̃(m,m−1)

2 is the Hilbert
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space, then using equalities (11) and (13) for the square of norm (5) we have

∥ℓ∥2
W̃2

(m,m−1)∗ = (ℓ,ψℓ) =

1∫
0

ℓ(x)ψℓ(x)dx

=

1∫
0

1− N∑
k=1

Ck

∞∑
β=−∞δ(x−hk−β)


×

(
d0−

N∑
k ′=1

Ck ′Gm(x−hk
′)

)
dx.

Simplifying the right-hand side of the above equality and taking into account the
condition (6) we obtain the following analytical expression

∥ℓ∥2
W̃2

(m,m−1)∗ = (−1)m
N∑
k=1

N∑
k ′=1

CkCk ′
∑
β ̸=0

e−2πiβh(k−k
′)

(2πiβ)2m−(2πiβ)2m−2
. (18)

Now, we apply the method of Lagrange unknown multipliers to solve Problem 1.
For this, consider the following function

L(C,d0) = ∥ℓ∥2
W̃2

(m,m−1)∗ −2(−1)
md0 (ℓ,1) ,

where C= (C1,C2, ...,CN).
Equating all partial derivatives of the function L(C,d0) by Ck and d0 we have

∂L

∂Ck
= 0, for k= 1,2, ...,N,

∂L

∂d0
= 0.

They give the following system of linear equations with respect to Ck,k= 1,N and d0:

N∑
k ′=1

Ck ′
∑
β̸=0

e−2πiβh(k−k
′)

(2πiβ)2m−(2πiβ)2m−2
= d0, for k= 1, ...,N, (19)

N∑
k ′=1

Ck ′ = 1. (20)

The last system is a system Wiener-Hopf type. The solution of the system (19)–(20)
gives the minimum to the square of the norm (18) for the error functional (3) in certain
values of Ck = �Ck (k= 1,2, ...,N) and �Ck are called the optimal coefficients, and d0 is
a stationary point for the function L(C,d0).

Its solvability follows from the general theory of the Lagrange multipliers. But,
as shown in calculations, the matrix of the system (19) and (20) coincides with the
matrix of the system considered in the work [16, p. 127] in the construction of optimal

cubature formulas in the Sobolev space L̃2
(m)

of periodic functions, and it was proved
the uniqueness of the set of the optimal coefficients. Hence follows that the system (19)
and (20) has a unique solution.
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The optimal coefficients of the quadrature formula

In this section, we show how to find the optimal coefficients of the quadrature
formula.
Let, we seek the solution of the system (19)–(20) in the form

�Ck = C(h), for k= 1,2, ...,N, (21)

where C(h) is an unknown function of h.

Putting (21) into (20), and taking into account that the quadrature formulas with
equal coefficients are optimal in the space of periodic functions (see [23] for full details),
we obtain C(h) = h. Now, figuring on the system has a unique solution, putting the
value of C(h) into equation (19), we find d0:

N∑
k ′=1

h
∑
β̸=0

e−2πiβh(k−k
′)

(2πiβ)2m−(2πiβ)2m−2
= d0, for k= 1,2, ...,N.

Since the infinite series in (19) is convergent, we can rewrite the last system as
follows

d0 = h
∑
β ̸=0

e−2πiβhk

(2πiβ)2m−(2πiβ)2m−2

N∑
k ′=1

e2πiβhk
′
, for k= 1,2, ...,N. (22)

It is known that
N∑
k ′=1

e2πiβhk
′
=
e2πiβh(1−e2πiβ)

1−e2πiβh
=

{
0, if β ̸= γN,
N, if β= γN,

γ ∈ Z. (23)

Taking into account (23), we rewrite equation (22) as follows

d0 = h
∑
γ̸=0

e−2πiγNhk

(2πiγN)2m−(2πiγN)2m−2
·N.

From the last equation and the well-known equality e−2πiγNhk= 1 (k= 1,2, ...,N and γ∈
Z) we have

d0 = (−1)m

∑
γ̸=0

1

(2πγN)2m− i2(2πγN)2m−2


= (−1)m ·2

 ∞∑
γ=1

1

(2πγN)2m+(2πγN)2m−2

 . (24)

Now we calculate the following infinite series to find d0∞∑
γ=1

1

(2πγN)2m+(2πγN)2m−2
=

(
h

2π

)2m ∞∑
γ=1

1

γ2m+
(
h
2π

)2
γ2m−2

=

(
h

2π

)2m−2

· (s1− s2) , (25)
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where s1 =
∞∑
γ=1

1
γ2m−2 and s2 =

∞∑
γ=1

γ4−2m

γ2+( h
2π)

2 for m≥ 2.

The problem of calculating the above infinite series came to the problem of
calculating s1 and s2.

Firstly, we calculate s1. To do this, we use the following Riemann zeta function

ζ(z) =

∞∑
n=1

1

nz
.

The value of the Riemann zeta function is equal to the following (see [20, p. 57])

ζ(2m) =
(−1)m+1(2π)2m

2 · (2m)!
·B2m, for m= 1,2, ...,

where B2m is Burnoulli number.
From the last equality we obtain the following

s1 = ζ(2m−2) =
(−1)m(2π)2m−2

2 · (2m−2)!
·B2m−2. (26)

Now, we use the following equality to calculate s2 (see [20, p. 64])

β(t) = PM(t)+(−1)Mt2M ·µM(t), (27)

where

β(t) =
1

t2

(
t

2
coth

(
t

2

)
−1

)
, (28)

PM(t) =

2M∑
n=2

Bn

n!
· tn−2,

µM(t) =

∞∑
k=1

2

(4π2k2+ t2) · (2πk)2M
, t ̸= 2πik.

Using the well-known formula t
et−1

=
∞∑
n=0

Bn
n! t

n, |t|< 2π, we can rewrite equality (28)

as follows

β(t) =

∞∑
n=2

Bn

n!
tn−2.

Now, using values of functions β(t),PM(t) and µM(t) at M =m− 2, we can write
equality (27) as follows

∞∑
n=2

Bn

n!
tn−2 =

2m−4∑
n=2

Bn

n!
tn−2+(−1)mt2m−4 · 2

(2π)2m−2
·Tm(t),

where

Tm(t) =

∞∑
n=1

n4−2m

n2+
(
t
2π

)2 .
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From the last expression and taking account that B2k+1 = 0, k ≥ 1, we obtain the
following

Tm(t) =
(−1)m(2π)2m−2

2t2m−4

∞∑
n=2m−2

Bn

n!
tn−2.

And so

s2 = Tm(h) =
(−1)m(2π)2m−2

2h2m−4

∞∑
n=2m−2

Bn

n!
hn−2. (29)

Taking into account equalities (25), (26) and (29), we have the following

∞∑
γ=1

1

(2πγN)2m+(2πγN)2m−2
=

(
h

2π

)2m−2
[
(−1)m(2π)2m−2

2(2m−2)!
B2m−2

−
(−1)m(2π)2m−2

2h2m−4

∞∑
n=2m−2

Bn

n!
hn−2

]
= (−1)m+11

2

∞∑
n=2m

Bn

n!
hn. (30)

From equalities (24) and (30), we have

d0 =−

∞∑
n=2m

Bn

n!
hn. (31)

Thereby, we have found (�Ck,d0) which the solution of the system (19) and (20).
Now, in the next section, using this solution, we give the main theorem of our work.

Calculation of the norm for the error functional of the optimal
quadrature formula (1)

The following theorem is valid for the error functional norm of the optimal
quadrature formula.

Theorem 1. The norm of the error functional (3) for the optimal quadrature
formula (1) has the form

∥∥∥�ℓ∥∥∥2
W̃

(m,m−1)∗
2

= (−1)m+1
∞∑

n=2m

Bn

n!
hn, for m≥ 2, (32)

where Bn are Bernoulli numbers.
Proof. We use equations (18) and (19) and then we have

∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ = (−1)m
N∑
k=1

N∑
k ′=1

�Ck�Ck ′
∑
β̸=0

e−2πiβh(k−k
′)

(2πiβ)2m−(2πiβ)2m−2

=

N∑
k=1

�Ck

 N∑
k ′=1

�Ck ′
∑
β̸=0

e−2πiβh(k−k
′)

(2πiβ)2m−(2πiβ)2m−2

 .
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Hence, taking into account (19) for the square of ∥�ℓ∥, we obtain the following

∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ = (−1)m
N∑
k=1

�Ck ·d0.

Hence, taking into account equalities (20) and (31), we obtain∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ = (−1)m+1
∞∑

n=2m

Bn

n!
hn, for m≥ 2.

Thus, Theorem 1 is completely proved.

Remark 1. It should be noted that from equality (32) and keeping in mind that
B2n+1 = 0 (n≥ 1) we have∥∥∥�ℓ∥∥∥2

W̃2
(m,m−1)∗ = (−1)m+1 B2m

(2m)!
h2m+(−1)m+1 B2m+2

(2m+2)!
h2m+2

+ (−1)m+1
∞∑

n=2m+4

Bn

n!
hn, for m≥ 2, (33)

i.e., the order of convergence of the optimal quadrature formula of the form (1) isO(hm).

According to the property of the Bernoulli numbers, if m is an even number then
B2m =−|B2m| is appropriate, otherwise B2m = |B2m|.

Taking into account the above properties of Bernoulli numbers, the following
corollary follow.

Corollary 1. If m is an even number we can rewrite equality (33) as follows∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ =
|B2m|

(2m)!
h2m−

B2m+2

(2m+2)!
h2m+2+O(h2m+4), (34)

where B2m+2 > 0, and if m is an odd number (m≥ 2)∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ =
B2m
(2m)!

h2m−
|B2m+2|

(2m+2)!
h2m+2+O(h2m+4). (35)

where B2m+2 < 0.

Remark 2. It should be noted that for any m≥ 2 from (34) and (35) we obtain∥∥∥�ℓ∥∥∥2
W̃2

(m,m−1)∗ =
|B2m|

(2m)!
h2m−

|B2m+2|

(2m+2)!
h2m+2+O(h2m+4).

This is less than the sharp error bound∥∥∥�ℓ∥∥∥2
L̃2

(m)∗ =
|B2m|

(2m)!
h2m

of the optimal quadrature of the form (3) in the space L̃2
(m)

(0,1] (see [4, Theorem 4.5,
page 205]).

222



Optimal quadrature formulas . . . ISSN 2079-6641

Corollary 2. In the case m= 2 expression (32) can be written as follows∥∥∥�ℓ∥∥∥2
W̃2

(2,1)∗ =
1

12
h2−

h

2
· e
h+1

eh−1
+1. (36)

Corollary 3. In the case m= 3 expression (32) can be written as follows∥∥∥�ℓ∥∥∥2
W̃2

(3,2)∗ =
h4

720
−
h2

12
+
h

2
· e
h+1

eh−1
−1. (37)

Conclusion

In the present paper, the optimal quadrature formula in the sense of Sard
is constructed in the space W̃

(m,m−1)
2 (0,1] of periodic, real-valued functions for

approximation of the Fourier integrals (1) with ω = 0. Here, we found analytical
forms for coefficients of the constructed optimal quadrature formula. In addition, we
calculated the norm of the error functional for the optimal quadrature formula and
obtained that this norm is less than the norm of the error functional for the optimal
quadrature formula in the space L̃2

(m)
(0,1] of periodic, real valued functions.
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Данная статья посвящена процессу нахождения верхней оценки абсолютной

погрешности оптимальной квадратурной формулы в пространстве W̃2

(m,m−1)

вещественнозначных периодических функций. Для этого используется экстре-
мальная функция квадратурной формулы. Кроме того, показано, что норма
функционала ошибки для оптимальной квадратурной формулы, построенной

в пространстве W̃2

(m,m−1)
, меньше значения нормы ошибки функционал для

оптимальной квадратурной формулы в пространстве Соболева L̃2
(m)

.
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