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The initial-boundary problem for the heat conduction equation inside a bounded do-
main is considered. It is supposed that on the boundary of this domain the heat ex-
change takes place according to Newton’s law. The control parameter is equal to the
magnitude of output of hot air and is defined on a givenmpart of the boundary. Then
we determined the dependence T(0) on the parameters of the temperature process
when 0 is close to critical value.
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1 Introduction

Consider in the bounded domain Q C R3 with piecewise smooth boundary 9Q the
heat conduction equation

w(x,t) = Au(x,t), x€Q, t>0, (1)
with boundary conditions

2_Tu1+h(x)u(x,t) =0, x€0Q\I, t>0, (2)
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— =a(x)u(t), xel, t>0, (3)

and initial condition
u(x,0) =0. (4)

Here T is some subset of 0Q) (heater or air conditioner) with piecewise smooth
boundary oI' and with mesl"> 0 (we denote by mesI" the surface measure of T", distinct
from Lebesgue measure [ ).

We suppose that h(x) (thermal conductivity of the walls) and a(x) (the density
of the power of the heater or air conditioner) are given piecewise smooth non-negative
functions, which are not identically zero. The condition (3) means that there is a blast of
hot (or cold) air with magnitude of output given by a measurable real-valued function
u(t), and condition (2) means that on the surface 0Q) a heat exchange takes place
according to Newton’s law (see, e.g. [16], Sect. II1.1.4).

We may extend both functions h(x) and a(x) to the whole boundary 0Q by setting
h(x) =0 for x € T, and a(x) =0 for x ¢ I'. In this case we may write the conditions (2)
and (3) in the following form

ou(x,t)
on

+h(x)u(x,t) = a(x)u(t), xe€0Q, t>0. (5)

By the solution of the initial boundary value problem (1)-(5), we mean the general-
ized solution defined in [13] (see Chapter III, Sec. 5).

Let M > 0 be some given constant. We say that the function p(t) is an admissible
control if this function is measurable on the half line t > 0 and satisfies the following
constraint

<M, t>0. (6)

Let the function p:Q — R satisfies conditions

For any 0 > 0 consider the condition

Ju(x,t)p(x) dx = 0. (7)
Q

Note that the weight function p(x) is not assumed to be strictly positive. In partic-
ular, the value (7) may be the average value over some subdomain of the main region
Q.

Denote by the symbol T(0) the minimal time required to reach the given value 0 by
the average value of the temperature. This means that the equation (7) is fulfilled for
t=T(0) and is not valid for t < T(0).

We present the critical value 0* such that for any 0 < 0* there exists the required
admissible control p(t) and corresponding value of T(0) < 400, and for 6 > 0* the
equality (7) is impossible.
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The purpose of this work is to determine the dependence T(0) on the parameters of
the temperature process when 0 is close to critical value.

We recall that the time-optimal control problem for partial differential equations of
parabolic type was first investigated in [6] and [7]. More recent results concerned with
this problem were established in [1], [2], [3], [4], [5], [10], [11]. Detailed information on
the problems of optimal control for distributed parameter systems is given in [8] and in
the monographs [9], [12] and [14].

To formulate the main result we describe some spectral properties of the correspond-
ing self-adjoint extension of Laplace operator.

Consider the following eigenvalue problem for the Laplace operator

— Avi(x) = Aewk(x), x€Q, (8)
with boundary condition
0
ng(lX) +h(x)vk(x) =0, xe€0Q. (9)

Under assumptions made above this problem is self-adjoint in [,(Q,dx) and there
exists a sequence of eigenvalues {Ay} so that

MIAMNL .. <A— +00, k—oo.

The corresponding eigenfunctions form a complete orthonormal system {vy}xen in
L,(Q,dx) and these functions belong to C(Q), where Q = QUJQ.
According to (8), we get

A = —(Avigvie) = J|Vvk(x)|2ax+ J v (x)Ph(x)do(x) > 0.
Q 00

If h(x) >0 and h(x) # 0 then, A; > 0. Indeed, assume that Ay = 0. Than the first
eigenfunction is an harmonic function

Avi(x) =0,

and, in accordance with the theorem of Giraud and Theorem I.5.II in the book [15], we
may state that vi =0.

According to the non-negative of the first eigenfunction (see, e.g. [17]) and from the
orthogonality of the eigenfunctions v; and v;, we get

A1 < Aj.

Recall that we consider the behavior of the function

u() = Ju(x,t)p(x) dx, (10)
Q

where the solution u(x,t) of the problem (1)-(4) depends on the control function w(t).
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Set
0° — M J (—A) " p(x)alx) do(x), (11)
r
and M
b = 2 low) | vilylaly)doly) (12
] r

Theorem 1. Let 0* >0 be defined by equation (11). Then
1) for every © from the interval 0 < 0 < 0* there exist T(0) such that

ut) < 6, 0<t<T(0),
and
u(T(e)) = o.
2) for 6 — 0* the following estimate s valid:

1T
T(0) = In——+—Inb+0(e" ),
(6) = Ry (e72771)

where
e=0"—0|"/M,

3) for every 6 > 0* the T(0) does not exists.

2 The Main Integral Equation

We consider the following Green function:
(x,y,1) Ze i(xwely), x€Q, yeQ, t>0.

This function is the solution of the initial-boundary value problem for the equation
Gt(x)y)t):AG(X)y)t)) XEQ’ t>o)

with boundary condition

%&y’t)—l—h(x)G(x,y,t) —0, x€0Q, t>0,

and initial condition
G(X,U,O) - 6(7(_9)

It follows from maximum principle that the Green function is non-negative (see, [1],

[31)

G(xy,t) >0, (xy)cQxQ, t>0.

Set
Hix,t) = j o(y)G(x,y,)dy, x€Q, t>0. (13)
Q
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It is clear that the function (13) is a solution of the following initial-boundary value
problem:
Hi(x,t)— AH(x,t) =0, x€Q, t>0

OH(x,t)

+h(x)u(x,t) =0, x€0Q, t>0,
on

and
H(x,0) =p(x), x€ Q.

In this using the spectral theorem in [,(Q,dx) we may write

Hixt) = je“dEAp(x)
0

Obviously,
H(x,t) = (pyvi)e Mvi(x) + Hi(x,t), t>0, (14)
where
o0
H;(x,t) = Je)‘tdEy\p(x). (15)
A2
Set

Ay = Jvk(y)a(y)do(y).
r

Proposition 1. The following estimate is valid:

Ay = Jvﬂy)ahﬂdchn:>0- (16)
r

Proof. Assume that this integral is equal to 0. Then on some surface I'1 C I v; equals

0:
v(s)=0, seTj.
It follows from (9) that
0
V) o sen.
on

Hence, vq(x) is a solution to homogeneous Cauchy problem and from the unique-
ness of the solution vi(x) =0, and this contradicts the assumption that v;(x) is an
eigenfunction. []

Set

Galyy) = Y Y, a7
k=2 k

Proposition 2. The function Hj(x,t) satisfies the following estimate

[Hi(x,t)| < [|Ap]l-v/Galx,x)e ™2, £>0,
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uniformly in x € Q.

Proof. From (15), we can write

o0 [e.o]
Hitt) = [ MdBrp() = 3 (pude wilx), 20
A k=2
2
Then, we have
2
‘H] X, t <

Z p,\)k (X)
k=2

< (irmmr%) (Ze P g (x) A > t>0.
k=2

Then, we get the following estimate

[Hi(x,t)| < [|Ap[|-v/Gax,x)e 2

O
Now we introduce the kernel of a main integral operator:
K(t) = [H(y, Daly)do(y). (18)
r

According to (14), we may write

K(t) = (p,w)e—mjw(y)a(y)da(y) T mey,t)a(deo(m -
I r

= Ar-(p,vi)e ™Mb + B(t)e ™2t (19)

where

Bt < B —HAPHJ\/Gzy ) aly)do(y).

r
The proof of the following Proposition 3 can be seen [1].
Proposition 3. The derivative of the kernel (18) satisfies the following estimates:

1
K’(t):%, 0o<t<l,
and
K'(t) = —MAje M4 0(1) e ™Mt t>1.

where A; is defined by the equality (16).
It is well-known (see, e.g. [13]) that the solution of the initial-boundary value problem
(1) + (4) + (5) may be represented by the Green function:

t
u(x,1) =Ju(s)dsje(x,y,t—s)a(y)do(y).
0 r
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According to condition (10) we can write

t
Jp(x)u(x,t)dx=ju(s)ds j a(y)do(y)jp(x)e(x,y,t—s)dx Uy
0

Q 00 Q

Then, from (13) and (18), we get the following integral equation

t
Jp(x)u(x,t)dx = JK(t—s)u(s)ds = U(t). (20)
Q 0

3 Proof of the Theorem 1
Set

t
L(x,t) = JH(x,s)ds. (21)
0

Then we can write

2 1—e Mkt . oAt
— é " (Pyvivk(x) = (—A) Tp(x) — N (p,vi)vi(x) — Ly(x,t)
where
O oMt
Lt = ) S—(pvidwilx)
k=2

We have the following estimate

S o
i = e (o) " (£
k

k=2

Hence,

ILi 1)l < e ™4/ Galx,x) [le]l- (22)

Further,
J L(x, Da(x) dolx) = j (—A) T p(x)]alx) dofx) —
r

r

_ i}_(p,w) Mt JL1 (x,t)a(x) do(x). (23)
1
r

We introduce a specific heating as
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t t
Q(t) :JK(t—s)ds:J'K(s)ds. (24)
0 0

The physical meaning of this function is evident: Q(t) equals the average tempera-
ture of () in case where the heater is acting unit load.

It is clear that Q(0) =0 and Q’(t) =K(t) > 0.

According to (18), we have

r I
t
= JK(s)ds = Q(t). (25)
0
Set -
Q' = lim Q(t) = | K(s)ds. (26)
0

Obviously, the average temperature of Q) in the case where the heater is acting with
unit load cannot exceed Q*.
Set
0" =MQ". (27)

Then, according to (22) and (23)
0(t) =MQ(t) = 8* — be ™Mt + O(e ™Y, (28)

where b defined by (12).
According to (26)-(28), for every 0 from the interval 0 < 0 < 0* there exist T(6) such
that
ut) <6, 0<t<T(0),

and
u(T(e)) = o.

Proposition 4. There exist T(0) > 0 and a real-valued measurable function p(t) so
that |i(t)] < M and the following equality

JK(T—s)u(s)ds —u(m, (29)

1s valid.

Proof. This follows from the properties of the function Q. Indeed, if we set p1(t) =M,
then we have

t t
JK(t—s)u(s)ds = MJK(t—s)ds = MQ(t),
0 0
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and because of (29) there exists T(0) > 0 so that MQ(T) =U(T). O
Remark. It is clear that the value T(0), which was found in Proposition 4, gives a
solution to the problem. Namely, T(0) is the root of the equation

_um _ o

Proposition 5. Let f(r) be increasing on the interval (0,1] and for some b, 3 >0
f(r) = br+O(r'*P), (30)

Then for inverse function r =f~'(s) the following estimate is valid:

L 1n1+1nb+0(sf3).
T S

Proof. According to (30),
s = br[1+«(r)], (31)

where
x(r) = O(rP).

Note that f(r) > 0 on the interval 0 < r < 1. Hence,

s > Cr, O<r<]1.

Then :
r(s) = f(s) < s
and
T(s) = O(s)
Hence,

Then, according to (31),

1 1 1 1
].Ilg = ].Ila"’].nm = ].Ila—].n[1+06(r)] =

= 1n1+1nl+0(\oc(r)!) = lnl—lnb—l—O(sB).
T b T

OJ
Corollary. The following equality s true:

1 1
t=In————— + —Inb + O(|0*—0(t)|P2"M)/A1)
Yo e T oM (' ()l )

Indeed, according to (28),
0*—0(t) = be ™M + O(e MY,
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Set
r=e MY =0 -0(t), p=i2-
A
Then, we get
e—)\zt _ e—)\1t(1+[3) r1+B

We can apply Proposition 5 and get

1 1 1
t= —Iln—— + —Inb 0" —0(1)P).
N Moo oA et 0 (lo"—0(1)?)

Then, for 6 — 0%, we have the following estimate

1 1
— In—+—1 A2—Aq
1(0) ns(6)+)\1 nb+O(e ),

where

e=0"—0|"/M,

The proof of Theorem 1 follows from Propositions 4 and 5.
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