Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 41. no. 4. pp. 191–208. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

MSC 78A60

Research Article

Optical characteristics of the thermosphere and mesosphere

B. M. Shevtsov, A. S. Perezhogin, I. S. Seredkin

Institute of Cosmophysical Research and Radio Wave Propagation, FEB RAS, 684034 Kamchatka region, Elizovskiy district, Paratunka, Mirnaya str., 7, Russia

E-mail: bshev@ikir.ru

Using lidar signals at wavelengths of 561 and 532 nm in the altitude range of 30-400 km, by solving the inverse problem, we restore the light scattering coefficients corresponding to these wavelengths, which makes it possible to compare the optical characteristics of the thermosphere, mesosphere and upper stratosphere and determine the relationship between the resonant, Rayleigh and aerosol scattering of light at different altitudes of the atmosphere. Using the scattering coefficients in the thermosphere, we find the cross sections of light scattering at wavelengths of 561 and 532 nm for the transitions of excited atomic oxygen and nitrogen ions and explain why the scattering coefficients for O+, 561 nm are smaller than for N+, 532 nm, while the concentration of O+ is two orders of magnitude higher than N+. The results obtained here are of interest for understanding the ionization effect of solar activity on the optical characteristics of the atmosphere, which determine weather and climate changes.

Key words: optics of the atmosphere, resonant lidar, laser ionozond, lidar reflections in the thermosphere, coefficient and cross-section of light scattering, ionization, aerosol, solar activity, ion aeronomy.

DOI: 10.26117/2079-6641-2022-41-4-191-208

Original article submitted: 01.12.2022

Revision submitted: 12.12.2022

For citation. Shevtsov B. M., Perezhogin A. S., Seredkin I. N. Optical characteristics of the thermosphere and mesosphere. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 41: 4, 191-208. DOI: 10.26117/2079-6641-2022-41-4-191-208

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Shevtsov B. M., Perezhogin A. S., Seredkin I. N., 2022

Funding. The work was carried out within the framework of the state assignment on the topic «Physical processes in the system of near space and geospheres under solar and lithospheric influences» (No. AAAA-A21-121011290003-0).

References

  1. Collins R. L., Lummerzheim D., Smith R. W. Analysis of lidar systems for profiling aurorally-excited molecular species, Appl. Optics, 1997, 36, 6024-6034.
  2. Gerrard A. J., et. al. Investigation of a resonance lidar for measurement of thermospheric metastable helium, JASTP, 1997, 59, 16, 2023-2035.
  3. Waldrop L. S., et. al. Generation of metastable helium and the 1083 nm emission in the upper thermosphere, J. Geophs. Res., 2005, 110, A08304. DOI:10.1029/2004JA010855
  4. Collins R. L., Su L., Lummerzheim D., Doe R. A. Investigating the Auroral Thermosphere with N2+ Lidar. In Characterising the Ionosphere. Meeting Proceedings RTO-MP-IST-056, Paper 2. Neuilly-sur-Seine, France: RTO,
    2006, pp. 2-1–2-14. Available from: http://www.rto.nato.int/abstracts.asp, https://www.researchgate.net/publication/233408410 RTO-MP-IST-056 2 -1.
  5. Shevtsov B. M., et. al. Stratospheric aerosol dynamics over Kamchatka and its association with geophysical processes, Geomagnetism and Aeronomy, 2009, 49:8, pp. 1302–1304. DOI: 10.1134/S0016793209080568
  6. Bychkov V. V., Nepomnyashchiy Yu. A., Perezhogin A. S., Shevtsov B. M. Lidar returns from the upper atmosphere of Kamchatka for 2008 to 2014 observations, Earth Planet Sp., 2014, 66:150. DOI: 10.1186/s40623-014-0150-6
  7. Bychkov V. V., et al. Appearance of light-scattering layers in the thermosphere of Kamchatka during the autumn of 2017, Proc. SPIE, 10833, 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Tomsk, Russian Federation, 2018, 10833A4. DOI: 10.1117/12.2504539
  8. Kaifler B., et al. Measurements of metastable helium in Earth’s atmosphere by resonance lidar, 2022, Nat Commun, 13, 6042.
  9. Kramida A., Ralchenko Yu., Reader J. and NIST ASD TEAM. «NIST Atomic Spectra Database (ver. 5.5.2)», 2021. https://physics.nist.gov/asd
  10. Bychkov V. V., Perezhogin A. N., Seredkin I. N. Resonant scattering by excited ions as an indicator of the precipitation of charged particles into the atmosphere, E3S Web of Conferences, Solar-Terrestrial Relations and Physics of Earthquake Precursors, 2018, 62, 01011. DOI: 10.1051/e3sconf/20186201011
  11. Bychkov V. V., Seredkin I. N. Resonance scattering in the thermosphere as an indicator of superthermal electron precipitation, Atmospheric and Oceanic Optics, 2021, vol. 34, no. 1, pp. 26-33. DOI: 10.1134/S1024856021010048
  12. Shevtsov B. M., Bychkov V. V., Perezhogin A. N., Seredkin I. N. Lidar for atmospheric transparency monitoring, EPJ Web of Conferences, 2021, 254, 01003. DOI: 10.1051/epjconf/202125401003
  13. Shevtsov B. M., Bychkov V.V., Perezhogin A. N., Seredkin I. N. Atmospheric Optical Characteristics in the Area of 30–400 km, Remote Sens., 2022, 14, 6108. DOI: 10.3390/rs14236108
  14. NRLMSISE-00 Atmosphere Model, 2022. https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
  15. Richards P. G. Reexamination of ionospheric photochemistry, JGR, 2011, 116, A8. DOI: 10.1029/2011JA016613
  16. Andreoli F., Gullans M. J., High A. A., Browaeys A., Chang D. E. Maximum Refractive Index of an Atomic Medium, Phys. Rev. X, 2021, 11, 011026. DOI: 10.1103/PhysRevX.11.011026

Shevtsov Boris Mikhaylovich – D. Sci. (Phys. & Math.), Chief Researcher, Laboratory of Electromagnetic Radiation, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 7, st. Mirnaya, Paratunka, Kamchatka, Russia, ORCID 0000-0003-0625-0361.


Perezhogin Andrey Sergeevich – Ph.D. (Phys. & Math.), Senior Researcher, Laboratory of Modeling of Physical Processes, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 7, st. Mirnaya, Paratunka, Kamchatka, Russia, ORCID 0000-0003-3972-2919.


Seredkin Ilya Sergeevich – Researcher, Laboratory of Electromagnetic Radiation, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 7, st. Mirnaya, Paratunka, Kamchatka, Russia, ORCID 0000-0002-9483-9864