Vestnik КRAUNC. Fiz.-Mat. nauki. 2024. vol. 47. no. 2. P. 58 – 74. ISSN 2079-6641

INFORMATION AND COMPUTING TECHNOLOGIES
https://doi.org/10.26117/2079-6641-2024-47-2-58-74
Research Article
Full text in Russian
MSC 00A69, 05C75

Contents of this issue

Read Russian Version

Search signs changes in the state of the near-surface layer of the lithosphere based on the image analysis results reflecting the characteristics dynamics of the geoacoustic emission signal

Y. I. Senkevich^\ast

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034, v. Paratunka, Mirnaya st., 7, Russia

Abstract. The lithosphere physical state, including its surface layers, in a certain way characterizes the likelihood of the risk of catastrophic seismic events, indicates the degree of threat to human life and the risk of economic damage. One of the directions for assessing the lithosphere state is the analyzing result the characteristics variability of the geoacoustic emission signal at the observation point. The studies results carried out at the Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences are presented. This make it possible to identify the dynamic characteristics of the geoacoustic emission signal associated with changes in the near-surface of the lithosphere. Recognition and assessment of the characteristics variability of geoacoustic emission signals on a given time scale of observations was carried out using a neural network approach. A methodology has been developed for classifying observed anomalies in the dynamics of geoacoustic emission signal characteristics.

Key words: lithosphere state, geoacoustic emission, pattern recognition, of signal characteristics dynamics, neural networks.

Received: 05.07.2024; Revised: 04.08.2024; Accepted: 22.08.2024; First online: 25.08.2024

For citation. Senkevich Y. I. Search signs changes in the state of the near-surface layer of the lithosphere based on the image analysis results reflecting the characteristics dynamics of the geoacoustic emission signal. Vestnik KRAUNC. Fiz.-mat. nauki. 2024, 47: 2, 58-74. EDN: HGQSBR. https://doi.org/10.26117/2079-6641-2024-47-2-58-74.

Funding. The work was supported by the Institute of Cosmophysical Research and Radio Wave Propagation FAB RAS State Task (subject registration No. 124012300245-2).

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. The author participated in the writing of the article and is fully responsible for submitting the final version of the article to the press.

^\astCorrespondence: E-mail: senkevich@ikir.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Senkevich Y. I., 2024

© Institute of Cosmophysical Research and Radio Wave Propagation, 2024 (original layout, design, compilation)

References

  1. Bogomolov L. M., Sycheva N. A. Prognoz zemletryaseniy v XXI veke: predystoriya i kontseptsii. Geosistemy perekhodnykh zon, 2022, no. 6(3) pp. 145-182 DOI: 10.30730/gtrz.2022.6.3.145-164.164-182 (In Russian).
  2. Rodkin M.V., Liperovskaya E.V. Problemy i novyy podkhod k prognozu sil’nykh zemletryaseniy. Problemy kompleksnogo geofizicheskogo monitoringa seysmoaktivnykh regionov. Devyataya Vserossiyskaya nauchno-tekhnicheskaya konferentsiya s mezhdunarodnym uchastiem. 24 – 30 September 2023. g. Tezisy dokladov. Petropavlovsk-Kamchatskiy: Kamchatskiy filial FITs EGS RAN, 2023. 24 p. (In Russian).
  3. Shebalin P. N., Gvishiani A. D., Dzeboev B. A., Skorkina A. A. Why are new approaches to seismic hazard assessment required? Doklady Rossiyskoy akademii nauk. Nauki o Zemle, 2022. vol. 507, no 1, pp. 91-97. DOI: 10.31857/S2686739722601466. (In Russian).
  4. Khayretdinov M.S., et al. Seismic-acoustic waves of seismic vibrators in the lithosphereathmosphere system. Vestnik NYaTs RK, 2018. vol. 2, pp. 44-48. (In Russian).
  5. Spivak A. A., Rybnov Y. S. Acoustic effects of strong earthquakes. Izvestiya, Physics of the Solid Earth. 2021. vol. 57. pp. 37-45.
  6. Muratov P. V., Rulenko O.P., Marapulets Yu. V., Solodchukv A. A. Elektricheskiy i akusticheskiy otklik pripoverkhnostnykh osadochnykh porod na prokhozhdenie seysmicheskikh voln ot zemletryaseniy. Vestnik KRAUNC. Fiz.-mat. nauki, 2018. no. 5(25), pp. 62-73, DOI: 10.18454/2079-6641-2018-25-5-62-73 (In Russian).
  7. Gapeev M. I., Marapulets Yu. V. Modelirovanie zon otnositel’nykh sdvigovykh deformatsiy pered sil’nymi zemletryaseniyami na Kamchatke, proizoshedshimi v period 2018-2021 gg. Vestnik KRAUNC. Fiz.-mat. nauki, 2021. vol. 37, no. 4, pp. 53-66, DOI: 10.26117/2079-6641-2021-37-4-53-66 (In Russian).
  8. Solomin S. V. Fizika zemli, Uchebnoe posobie dlya studentov, obuchayushchikhsyapo spetsial’nosti 011200 – geofizika., vol. 2 (Seysmologiya). Saratov: Iz-vo «Nauchnaya kniga», 2008. 42 p. (In Russian).
  9. Samsonov V. B., et al. Nelineynaya dinamika Zemli: sfery i struktury samoorganizatsii, monografiya: pod red. V. B. Samsonova. Saratov: Sovmestnyy ucheb.-nauch. tsentr in-ta agrarnykh problem RAN i Saratovskogo gos. un-ta im. N. G. Chernyshevskogo “Sotsial’naya geografiya i regional’nyy analiz 2005. 217 p. (In Russian).
  10. Mazurov B. T. Matematicheskoe modelirovanie pri issledovanii geodinamiki [Mathematical modeling in the study of geodynamics]. Novosibirsk: Agentstvo «Sibprint», 2019. 360 p. (In Russian).
  11. Sychev V. N., Bogomolov L. M. Potentsial metodov nelineynoy dinamiki dlya analiza geofizicheskikh ryadov i seysmichnosti. Trudy konferentsii Solnechno-zemnye svyazi i fizika predvestnikov zemletryaseniy VI mezhdunarodnaya konferentsiya 9-13 September 2013. 2013. (In Russian).
  12. Marapulets Yu.V., et al. Kompleksnyy analiz akusticheskikh i elektromagnitnykh signalov dlya otsenki urovnya seysmicheskoy opasnosti [Comprehensive analysis of acoustic and electromagnetic signals for assessing the level of seismic hazard]. Vladivostok: Dal’nauka. 2020. 120 p. (In Russian).
  13. Senkevich Yu. I., et al. Technique of informative features selection in geoacoustic emission signals. SPIIRAS Proceedings, 2019. vol. 18, no. 5, pp. 1066–1092 DOI: 10.15622/sp.2019.18.5.1066-1092. (In Russian).
  14. Senkevich Yu. I. Stochastic modeling of geoacoustic emission pulse signal. Digital signal processing. 2023. no. 1. pp. 27-34. (In Russian).
  15. Ignat’ev Yu.G. Matematicheskie modeli teoreticheskoy fiziki s primerami resheniya zadach v SKM Maple [Mathematical models of theoretical physics with examples of solving problems in SCM Maple]. Izdanie vtoroe, ispravlennoe i dopolnennoe. Kazan’: Kazanskiy universitet, 2023. 248 p. (In Russian).
  16. Kuznetsov A.P. Dinamicheskie sistemy i bifurkatsii [Dynamic systems and bifurcations]. Saratov: Izdatel’skiy tsentr «Nauka», 2015. 168 p. (In Russian).
  17. Malevich N. E. Malevich N., E. Nonlinear dynamics [Nonlinear dynamics]. Samara: SamGAU, 2007. 160 p. (In Russian).
  18. Senkevich Yu. I., Mishchenko M. A. Metodika otsenki sostoyaniya pripoverkhnostnykh osadochnykh porod po rezul’tatam nablyudeniy dinamicheskikh kharakteristik geoakusticheskoy emissii. Vestnik KRAUNTs. Fiz.-mat. nauki. 2023. vol. 45, no. 4, pp. 109-121, DOI: 10.26117/2079-6641-2023-45-4-109-121 (In Russian).
  19. Senkevich, Yu.I., Marapulets, Yu.V., Lukovenkova, O.O., Solodchuk, A.A. Metodika vydeleniya informativnykh priznakov v signalakh geoakusticheskoy emissii. Trudy SPIIRAN. no. 18(5), pp. 1066-1092 DOI: 10.15622/sp.2019.18.5.1066-1092 (In Russian).
  20. Senkevich Yu.I., Lukovenkova O.O., Solodchuk A.A. Metodika formirovaniya Reestra geofizicheskikh signalov na primere signalov geoakusticheskoy emissii. Geosistemy perekhodnykh zon. vol. 2. no. 4, pp. 409-418 DOI: 10.30730/2541-8912.2018.2.4.409-418 (In Russian).
  21. Senkevich Yu.I., Marapulets Yu.V., Lukovenkova O.O., Solodchuk A.A., Mishchenko M.A., Malkin E.I., Gapeev M.I. Sposob obnaruzheniya kompleksnogo predvestnika zemletryaseniy, patent 2758582, Ros.Federatsiya G01V 11/00, G01V 1/00, G01V 3/12 (FGBUN IKIR DVO RAN. № 2020138668; 26.11.2020, Byul. № 31. 9 s.) (In Russian).
  22. Mishchenko M.A., Larionov I.A., Shcherbina A.O. Baza dannykh «Reestr seysmoakusticheskikh signalov po nablyudeniyam v doline reki Karymshina, FGBUN IKIR DVO RAN ot 09.01.2023, registration certificate Data Base 2023620001. (In Russian).
  23. Senkevich Yu.I. Search for Hidden Patterns in Acoustic and Electromagnetic Pulse Signals, 2020 XXIII International Conference on Soft Computing and Measurements (SCM). IEEE, 2020, 2020 DOI: 10.1109/SCM50615.2020.9198754 (In Russian).
  24. Marapulets Yu.V., Solodchuk A.A. Sutochnyy khod temperatury kak prichina vozniknoveniyaperiodicheskoy variatsii vysokochastotnoy geoakusticheskoy emissii. Meteorologiya i gidrologiya. 2016. vol. 4, pp. 37-44. (In Russian).

Information about the author

Senevich Yury Igorevich – D. Sci. (Tech)), Docent, Leading Researcher, Laboratory of Acoustic Research, Institute of Cosmophysical and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0003-0875-6112.