Bulletin KRASEC. Phys. & Math. Sci. 2017. vol. 16, issue. 1. pp. 5-10. ISSN 2313-0156

DOI: 10.18454/2313-0156-2017-16-1-5-10

MATHEMATICS

MSC 34M10, 35M20

LINEAR INVERSE PROBLEM FOR A MIXED SECOND ORDER EQUATION OF THE SECOND KIND WITH NONLOCAL BOUNDARY CONDITIONS IN THREE-DIMENSIONAL SPACE

S. Z. Djamalov

Institute of Mathematics, Uzbekistan Academy of Sciences, 100125, Tashkent, Academgorodok, Do’rmon yo’li, 29 str.
E-mail: siroj63@mail.ru

The paper considers the problems of correctness of a linear inverse problem for a mixed second order equation of the second kind in three-dimensional space. The theorems on the existence and the uniqueness of the solution in a certain class are proved by «e-regularization», Galerkin and successive approximation methods.

Keywords: linear inverse problem, solution correctness, Galerkin’s method, «e — regularization» method, method of successive approximations.

 

References

  1. Anikonov Yu. E. Nekotorye metody issledovaniya mnogomernykh obratnykh zadach dlya differentsial’nykh uravneniy [Some methods for investigation of multidimensional inverse problems for differential equations]. Novosibirsk. Nauka. 1978. 120 p.
  2. Bubnov B. A. K voprosu o razreshimosti mnogomernykh obratnykh zadach dlya parabolicheskikh i giperbolicheskikh uravneniy [The question of solvability of multidimensional inverse problems for parabolic and hyperbolic equations]. Preprinty No. 713,714. Novosibirsk. VC. SO AN SSSR.1987. 44 p.
  3. Vragov V. N. Kraevye zadachi dlja neklassicheskih uravnenij matematicheskoj fiziki [Boundary value problems for nonclassic equations of mathematical Physics]. Novosibirsk. NGU. 1983. 84 p.
  4. Dzhamalov S. Z. Ob odnoy nelokal’noy kraevoy zadachi dlya uravneniya smeshannogo tipa vtorogo roda vtorogo poryadka [Nonlocal boundary value problem for mixed second order equation]. Uzbekskiy matematicheskiy zhurnal. 2014. no. 1. pp. 5-14.
  5. Djamalov S. Z. On the correctness of a nonlocal problem for the second order mixed type equation of the second kind in a rectangle. IIUM Engineering Journal. 2016. vol 17. no. 2. pp. 95-104.
  6. Djamalov S. Z. Linear inverse problem for Trikomi equation in three-dimensional space. Bulletin KRASEC. Phys. and Math. Sci. 2016. vol. 13. no. 2. pp. 10-15.
  7. Dzhenaliev M. T. K teorii kraevykh zadach dlya nagruzhennykh differentsial’nykh uravneniy [Theory of boundary value problems for loaded differential equations]. Almaty. Institut teoreticheskoj i prikladnoj matematiki. 1995.
  8. Kozhanov A. I. Nelineynye nagruzhennye uravneniya i obratnye zadachi [Nonlinear loaded equations and inverse problems]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki – Computational Mathematics and mathematical Physics. 2004. vol. 44. no. 4. pp. 694-716
  9. Kozhanov A. I Ob odnom nelineynom nagruzhennom parabolicheskom uravneniy i o svyazannoy s nim obratnoy zadache [Nonlinear loaded parabolic equation and inverse problem associated with it]. Matematicheskie Zametki – Mathematical Notes. 2004. vol. 76. no. 6. pp. 840-853.
  10. Sabitov K. B, Safin E. M. Obratnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougol’noy oblasti [Inverse problem for parabolic-hyperbolic equation in a rectangular domain]. Doklady Rossiyskoy Akademii Nauk – Doklady Mathematics. 2009. vol. 429. no. 4. pp. 451-454.
  11. Sabitov K. B., Martem’yanova N.V. Nelokal’naya obratnaya zadacha dlya uravneniya smeshannogo tipa [Nonlocal inverse problem for mixed equation]. Izvestiya vysshikh uchebnykh zavedeniy. Matematika – Russian Mathematics. 2011. no. 2. pp. 71-85.
  12. Lavrent’ev M. M, Romanov V. G, Vasil’ev V. G. Mnogomernye obratnye zadachi dlya differentsial’nykh uravneniy [Multidimensional inverse problems for differential equations]. Novosibirsk. Nauka. 1969. 67 p.
  13. Ladyzhenskaya O. A. Kraevye zadachi matematicheskoy fiziki [Boundary value problems of mathematical Physics]. Moscow. Nauka. 1973.
  14. Naymark M. A. Lineynye differentsial’nye operatory [Linear differential operators]. Moscow. Nauka. 1969.

For citation: Djamalov S. Z. Linear inverse problem for a mixed second order equation of the second kind with nonlocal boundary conditions in three-dimensional space. Bulletin KRASEC. Physical and Mathematical Sciences 2017, vol. 16, issue 1, 5-10. DOI: 10.18454/2313-0156-2017-16-1-5-10.

Original article submitted: 20.03.2016

Djam

  Djamalov Sirojiddin Zuhriddinovich – Ph.D.(Phys & Math), Senior Researcher of department Differential equations, Institute of mathematics, Uzbekistan Academy of Sciences, Tashkent, Republic of Uzbekistan.

Download article Djamalov S.Z.