Vestnik КRAUNC. Fiz.-Mat. nauki. 2023. vol. 44. no. 3. P. 30-38. ISSN 2079-6641

MATHEMATICS

https://doi.org/10.26117/2079-6641-2023-44-3-30-38

Research Article

Full text in Russian

MSC 35D99

Contents of this issue

Read Russian Version

On a Сlass of Non-Local Boundary Value Problems for the Heat Equation

F. M. Nakhusheva¹, M. A. Kerefov¹, S. Kh. Gekkieva²^\ast, M. M. Karmokov¹

¹Kabardino-Balkarian State University named after H.M. Berbekov, 360004, Nalchik, Chernyshevsky st., 173, Russia

²Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Center of RAS, 360000, Nalchik, Shortanova st., 89 A, Russia

Abstract. Non-local boundary value problems for parabolic equations, including the equations of thermal
conductivity, have been the object of research for a long time. Interest in such problems is caused by the need
for further development of the theory of boundary value problems with displacement (Nakhushev’s problems), as
well as in connection with their numerous applications. This article is devoted to the study of the question of
the unambiguous solvability of one class of nonlocal boundary value problems for the heat equation. The problem of finding a regular solution of the thermal conductivity equation with a fractional Riemann – Liouville derivative under boundary conditions is considered. The Cauchy problem for an equation equivalent to the original equation is considered, and it is proved that the boundary value problem under consideration is reduced to the first boundary value problem for the heat equation, provided that the Cauchy problem has a unique solution in the class of functions satisfying the conditions of A. N. Tikhonov. In this case, the solution is represented as an integral equation containing the Barrett function in the kernel. Also, by reducing to a system of differential equations with a fractional Riemann-Liouville derivative, the question of the uniqueness and existence of a solution to the problem is solved when the values of the solution at the other end are in the condition. The results obtained in this work will serve as a basis for further research of nonlocal boundary value problems for parabolic differential equations underlying mathematical modeling of processes in systems with fractal structure, as well as the development of the theory of fractional differential equations.

Key words: class of nonlocal boundary value problems, Tikhonov conditions, regular solution, Cauchy problem, homogeneous problem, fractional differentiation operator, fractional differential equations.

Received: 28.06.2023; Revised: 27.10.2023; Accepted: 01.11.2023; First online: 02.11.2023

For citation. Nakhusheva F. M., Kerefov M. B., Gekkieva S. Kh., Karmokov M. M. On a class of non-local
boundary value problems for the heat equation. Vestnik KRAUNC. Fiz.-mat. nauki. 2023, 44: 3, 30-38. EDN:
WFBWCX. https://doi.org/10.26117/2079-6641-2023-44-3-30-38.

Funding. The study was carried out without support from foundations

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. The author participated in the writing of the article and is fully responsible for
submitting the final version of the article to the press.

^\astCorrespondence: E-mail: fatima-nakhusheva@mail.ru, kerefov@mail.ru, gekkieva_s@mail.ru, mkarmokov@yandex.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Nakhusheva F. M., Kerefov M. B., Gekkieva S. Kh., Karmokov M. M., 2023

© Institute of Cosmophysical Research and Radio Wave Propagation, 2023 (original layout, design, compilation)

References

  1. Nakhushev A. M. Equations of mathematical biology. Moscow: Vysshaja shkola, 1995. 301
    p. [Nahushev A. M. Uravnenija matematicheskoj biologii. M.: Vysshaja shkola, 1995. 301
    s.] (In Russian).
  2. Shkhanukov M. Kh., Kerefov A. A., Berezovsky A. A. Boundary value problems of heat conduction equations with fractional derivative in boundary conditions and difference methods of their numerical implementation, Ukrainian Mathematical Journal. 1993. Vol. 45, no. 9. Pp. 1289–1298. [Shhanukov M. H., Kerefov A. A., Berezovskij A. A. Kraevye zadachi uravnenij teploprovodnosti s drobnoj proizvodnoj v granichnyh uslovijah i raznostnye
    metody ih chislennoj realizacii, Ukrainskij matematicheskij zhurnal. 1993. T. 45, № 9. S. 1289–1298.] (In Russian).
  3. Nakhushev A. M. On the equations of state of continuous one-dimensional systems and their applications. Nalchik: Logos, 1995. 50 p . [Nahushev A. M. Ob uravnenijah sostojanija nepreryvnyh odnomernyh sistem i ih prilozhenijah. Nal’chik: Logos, 1995. 50 s.] (In Russian).
  4. Nakhushev A. M. Inverse problems for degenerate equations and Volterra integral equation of the third kind, Differential equations. 1974. Vol. 10, no. 1. Pp. 100–111. [Nahushev A. M. Obratnye zadachi dlja vyrozhdajushhihsja uravnenij i integral’nogo uravnenija Vol’terra tret’ego roda, Differencial’nye uravnenija. 1974. T. 10, № 1. S. 100–111.] (In Russian).
  5. Shkhanukov M. H., Mitropolsky Yu. A., Berezovsky A. A. On a non-local problem for a parabolic equation, Ukrainian Mathematical Journal. Kiev, 1995. Vol. 47, no. 6. pp. 790–800. [Shkhanukov M. H., Mitropolsky Yu. A., Berezovsky A. A. Ob odnoj nelokal’noj zadache dlja parabolicheskogo uravnenija, Ukrainskij matematicheskij zhurnal. Kiev, 1995. T. 47, № 6. S. 790-–800.] (In Russian).
  6. Alikhanov A. A. Non-local boundary value problems in differential and difference interpretations, Differential Equations. 2008. vol. 44, no. 7. Pp. 924–931. [Alihanov A. A. Nelokal’nye kraevye zadachi v differencial’noj i raznostnoj traktovkah, Differencial’nye uravnenija. 2008. T. 44, № 7. S. 924–931.] (In Russian).
  7. Nakhusheva F. M., Kudaeva F. H., Kaigermazov A. A., Karmokov M. M. Difference scheme for fractional order diffusion equation with concentrated heat capacity. Modern problems of science and education (Electronic scientific Journal). Moscow: RAE Publishing House. 2015, no. 2-2. pp. 1–7. [Nakhusheva F. M., Kudaeva F. H., Kaigermazov A. A., Karmokov M. M. Raznostnaja shema dlja uravnenija diffuzii drobnogo porjadka s sosredotochennoj teplojomkost’ju, Sovremennye problemy nauki i obrazovanija (Jelektronnyj nauchnyj zhurnal). M.: Izd. RAE. 2015, № 2-2. S. 1–7.] (In Russian).
  8. Nakhusheva F. M., Dzhankulaeva M. A., Nakhusheva D. A. The equation of thermal conductivity with a fractional derivative in time at a concentrated heat capacity, International Journal of Applied and Fundamental Research. 2017. No. 8-1. pp. 22–27. [Nakhusheva F. M., Dzhankulaeva M. A., Nakhusheva D. A. Uravnenie teploprovodnosti s
    drobnoy proizvodnoy po vremeni pri kontsentrirovannoy teploemkosti, Mezhdunarodnyy
    zhurnal prikladnykh i fundamental’nykh issledovaniy. 2017. № 8-1. S. 22-27.] (In Russian).
  9. Nakhusheva F. M., Vodakhova V. A., Dzhankulaeva M. A., Guchaeva Z. H. Numerical solution of the diffusion equation with a fractional derivative in time with a concentrated heat capacity. In the collection: Modern problems of applied mathematics, computer science and mechanics, Materials of the International Scientific Conference. 2019. Pp. 104–110. [Karmokov M. M., Buzdova A. V. Chislennoe reshenie uravneniya diffuzii s drobnoy proizvodnoy po vremeni s sosredotochennoy teploemkost’yu. V sbornike: Sovremennye problemy prikladnoy matematiki, informatiki i mekhaniki, Materialy Mezhdunarodnoy nauchnoy konferentsii. 2019. S. 104-110.] (In Russian).
  10. Kerefov M. A., Nakhusheva F. M., Gekkieva S. H. Boundary value problem for the generalized Aller–Lykov moisture transfer equation with concentrated heat capacity, Bulletin of Samara University. Natural Science series. 2018. Vol. 24. No. 3. pp. 23-29. [Kerefov M. A., Nakhusheva F. M., Gekkieva S. H. Kraevaya zadacha dlya obobshchennogo
    uravneniya vlagoperenosa Allera – Lykova s sosredotochennoy teploemkost’yu, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya. 2018. T. 24. № 3. S. 23-29.] (In Russian).
  11. Barrett J. H. Dielectric Constant in Perovskite Type Crystals, Physical Review. 1952. vol. 86, issue 1. pp. 118

Information about authors

Nakhusheva Fatima Mukhamedovna – Ph. D. (Phys. & Math.), Associate Professor, Kabardino-Balkarian State University named after Kh. M. Berbekov, Department of Applied Mathematics and Computer Science, Nalchik, Russia, fatima-nakhusheva@mail.ru, ORCID 0000-0002-3750-1445.


Kerefov Marat Aslanbievich – Ph. D. (Phys. & Math.), Associate Professor, Kabardino-Balkarian State University named after Kh. M. Berbekov, Department of Applied Mathematics and Computer Science, Nalchik, Russia, kerefov@mail.ru, ORCID 0000-0002-7442-5402.


Gekkieva Sakinat Khasanovna – Ph. D. (Phys. & Math.), Leading researcher, Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Center of RAS, 360000, Nalchik, Shortanova st., 89 A, Russia, gekkieva_s@mail.ru, ORCID 0000-0002-2135-2115.


Karmokov Mukhamed Matsevich – Ph. D. (Phys. & Math.), Associate Professor, Kabardino-Balkarian State University named after Kh. M. Berbekov, Department of Applied Mathematics and Computer Science, Nalchik, Russia, mkarmokov@yandex.ru, ORCID 0000-0001-5189-6538.