Vestnik КRAUNC. Fiz.-Mat. nauki. 2025. vol. 50. no. 1. P. 22 – 39. ISSN 2079-6641

MATHEMATICS
https://doi.org/10.26117/2079-6641-2025-50-1-22-38
Research Article
Full text in Russian
MSC 35A02

Contents of this issue

Read Russian Version

On a Boundary Value Problem with Third Kind Boundary Conditions for a Third-Order Mixed-Type Equation with an Elliptic-Hyperbolic Principal Operator

B. I. Islomov, G. K. Kilishbayeva

National University of Uzbekistan named after M. Ulugbek, Tashkent, 100174, st. Universitetskaya 4, Republic of Uzbekistan

Abstract. In this paper, a method for solving a problem with a boundary condition of the third kind for a third-order equation of elliptic-hyperbolic type with a superposition of first- and second-order operators in a rectangular domain is proposed. It is shown that the correctness of the problem statement depends significantly on the ratio of the sides of the rectangle from the hyperbolic part of the mixed domain. An example is given in which the problem with homogeneous conditions has a nontrivial solution. A solution to the problem is constructed as a sum of a series in eigenfunctions of the corresponding one-dimensional spectral problem. A criterion for the uniqueness of the solution is established. When substantiating the uniform convergence of the series, the problem of small denominators arises. In this connection, estimates of small denominators on the distance from zero with the corresponding asymptotics are established. These estimates made it possible to prove the convergence of the series in the class of regular solutions of this equation. Estimates of the stability of the solution from the given boundary functions are proved.

Key words: third order equation, conditions of the second kind, spectral method, small denominators, uniqueness, existence, stability.

Received: 20.01.2025; Revised: 21.03.2025; Accepted: 23.03.2025; First online: 24.03.2025

For citation. Islomov B. I., Kilishbaeva G. K. On a boundary value problem with third kind boundary conditions for a third-order mixed-type equation with an elliptic-hyperbolic principal operator. Vestnik KRAUNC. Fiz.-mat. nauki. 2025, 50: 1, 22-39. EDN: XRZCCH. https://doi.org/10.26117/2079-6641-2025-50-1-22-38.

Funding. The study was conducted without the support of foundations.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

^{\ast}Correspondence: E-mail: islomovbozor@yandex.com , kalbaevna85@mail.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Islomov B. I., Kilishbaeva G. K., 2025

© Institute of Cosmophysical Research and Radio Wave Propagation, 2025 (original layout, design, compilation)

References

  1. Bitsadze A. V., Salaxitdinov M. S. K teorii uravneniy smeshanno-sostavnogo tipa. [On the theory of equations of mixed – composite type]. Siberian Mathematical Journal. Novosibirsk, 1998, vol. 2. No. 1. pp. 7–19.(In Russian).
  2. Mikhailov V.P. O pervoy kraevoy zadache dlya odnogo klassa gipoellipticheskix uravneniy [On the first boundary value problem for one class of hypoelliptic equations] Mat. sbornik, 1964, vol. 63, no. 2. pp. 238—264.(In Russian).
  3. Salakhitdinov M. S. Uravnenie smešanno-sostavnogo tipa [Equation of mixed-composite type]. Uzbekistan. Tashkent: Fan, 1974. 156 p.  (In Russian).
  4. Xachev M. M. Zadacha Dirixle dlya obobshennogo uravneniya Lavrentev — Bitsadze v pryamougolnoy oblasti. [Dirichlet problem for the generalized Lavrentiev-Bitsadze equation in a rectangular domain] Differential Equations, 1978, vol. 14, no. 1. pp. 136—139. (In Russian).
  5. Dzhuraev T. D. Kraevыe zadachi dlya uravneniy smeshannogo i smeshanno-sostavnogo tipa [Boundary value problems for equations of mixed and mixed-composite type] Tashkent, 1979, 240 p. (In Russian).
  6. Kozhanov A. I. Smeshannaya zadacha dlya nekotorix klassov nelineynix uravneniy tretego poryadka [Mixed problem for some classes of third-order nonlinear equations] Matem. Sbornik, 1982, vol. 118(116), no. 4(8). pp. 504—522. (In Russian).
  7. Dzhuraev T. D., Sopuyev A., Mamajonov M. Krayevi zadachi dlya uzravneniy parabologiperbolicheskogo tipa [Boundary value problems for parabolic-hyperbolic equations.] Tashkent, 1986, 220 p. (In Russian).
  8. Kozhanov A. I. O Kraevix zadachax dlya nekotorix klassov uravneniy visokogo poryadka, ne razreshennix otnositelno starshey proizvodnoy. [On boundary value problems for some classes of high-order equations that are not solved with respect to the highest derivative] Sib. mat. jurnal, 1994, vol. 35, no. 2. pp. 359—376.(In Russian).
  9. Moiseev E. I. O reshenii spektralnim metodom odnoy nelokalnoy zadachi. [On the solution of one non-local problem by the spectral method] Differential Equations, 1999, vol. 35, no. 8. pp. 1094-1100.(In Russian).
  10. Djoxadze O. M. Vliyanie mladshix chlenov na korrektnost postanovki xarakteristicheskix zadach dlya giperbolicheskix uravneniy tretego poryadka. [The influence of minor terms on the correctness of the formulation of characteristic problems for third-order hyperbolic equations] Mat. zametki, 2003, vol. 74, no. 4. pp. 517—528.(In Russian).
  11. Sabitov K. B. Zadacha Dirixle dlya uravneniy smeshannogo tipa v pryamougolnoy oblasti. [Dirichlet problem for equations of mixed type in a rectangular domain] Dokladi RAN, 2007, vol. 413, no. 1. pp. 23—26.(In Russian).
  12. Zikirov O. S. A nonlocal boundary value problem for third order linear partial differential equation of composite type. Math. Model.and Anal., 2009, vol. 14, no. 3. pp. 407—421.
  13. Chen S. X. Mixed type equations in gas dynamics. Quart. Appl. Math., 2010, vol LVXIII, no. 3. pp. 487—511.
  14. Sabitov K. B., Safin E. M. Obratnaya zadacha dlya uravneniya smeshannogo parabologiperbolicheskogo tipa v pryamougolnoy oblasti. [Inverse problem for a mixed parabolic-hyperbolic equation in a rectangular domain] Izv. vuzov. Matem., 2010, no. 4. pp. 55—62. (In Russian).
  15. Udalova G. YU. Obratnaya zadacha dlya uravneniya smeshannogo elliptikogiperbolicheskogo tipa. [Inverse problem for an equation of mixed elliptic-hyperbolic type] Vestnik SamGU – Estestvenno-nauchnaya seriya. 2010, vol. 78, no. 4. pp. 116—122. (In Russian).
  16. Eleev V. A., Kumykova S. K. Vnutrenne kraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnimi xarakteristikami. [Interior boundary value problem for a third-order mixed-type equation with multiple characteristics] 2010, vol. 5, no. 37. pp. 5—14.(In Russian).
  17. Sabitov K. B. Kraevaya zadacha dlya uravneniy smeshanongo tipa tretego poryadka v pryamougolnoy oblasti. [Boundary value problem for third order mixed type equations in a rectangular domain] Differential Equations, 2011, vol. 47, no. 5. pp. 705—713. (In Russian).
  18. Sabitov K. B., Martemyanova N. V. Nelokalnaya obratnaya zadacha dlya uravneniya smeshannogo tipa. [Nonlocal inverse problem for a mixed type equation] Izv. Vuzov. Matematika, 2011, no. 2. pp. 71—85. (In Russian).
  19. Islomov B. I, Baltaeva U. I. Boundary value problems for a third-order loaded parabolic hyperbolic equation with variable coefficients. Electron. J. Diff. Equ, 2015, vol. 2015, no. 221. pp. 1—10.(In Russian).
  20. Salakhitdinov M. S., Karimov E. T. Uniqueness of inverse source non-local problem for fractional order mixed type equation. Euroasian Mathematical Journal, 2016, no. 1. pp. 74—83. (In Kazakhstan).
  21. Islomov B. I., Usmonov B. Nonlocal boundary value problem for a third-order equation of elliptic-hyperbolic type. Labachevskii Journal of Mathematics, 2020, vol. 41, no. 1. pp. 32-38. (In Russian).
  22. Yuldashev T. K., Islomov B. I., Alikulov E. K. Boundary value problems for a loaded parabolic-hyperbolic equations in infinite three dimensional domains third order. Lobachevckii Journal of Mathematics, 2020, vol. 41, no. 5. pp. 926—944. (In Russian).
  23. Islomov B.I., Ubaydullaev U.SH. Obratnaya zadacha dlya uravneniya smeshannogo tipa s operatorom drobnogo poryadka v pryamougolnoy oblasti. Izv. vuzov. Matematika, 2021, no. 3. pp. 29—46.(In Russian).
  24. Yuldashev T. K., Islomov B. I., Ubaydullaev U. Sh. On Boundary value problems for a mixed type fractional differential equation with Caputo Operator. Bulletin of the Karaganda University Mathematicsseries, 2021, vol. 101, no. 1. pp. 127—137.
  25. Islomov B. I., Kilishbaeva G. K. Boundary value problems for third-order mixed equations in the rectangular domain. Science and education in Karakalpakstan. 2022, vol. 101, no. 1. pp. 32—41.
  26. Abdullaev O. Kh., Yuldashev T. K. Inverse problems for a loaded parabolic-hyperbolic equation involving the Riemann–Liouville operator. Lobachevskii Mat. Journal. 2023, vol. 44, no 3. pp. 32—41. (In Russian).
  27. Islomov B. I., Usmonov B. Nonlocal Boundary Value Problems for a Third Order Equation of Elliptic-Hyperbolic Type. AIP Conference Proceedings, 2024, vol 3004. 040016-1-040016-10.

Information about the authors

Islomov Bozor Islomovich – DSc (Phys. & Math.), Professor of the Department of “Differential Equations and Mathematical Physics” of the National University of Uzbekistan named after Mirzo Ulugbek,
Uzbekistan, ORCID 0000-0002-3060-3019.


Kilishbaeva Gulnaz Kalbayevna – doctoral student (PhD) of the Department of “Differential Equations and Mathematical Physics” of the National University of Uzbekistan named after Mirzo Ulugbek,
Uzbekistan, ORCID 0009-0005-9225-2508.