Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 41. no. 4. pp. 32–46. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

MSC 86-10

Research Article

Estimating the increased deformations areas that occur during the preparation of Kamchatka earthquakes

M. I. Gapeev¹²

¹Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034, Paratunka, Mirnaya str., 7, Russia

²Vitus Bering Kamchatka State University, 683032, Petropavlovsk-Kamchatskiy, Pogranichnaya str., 4, Russia


The article is devoted to mathematical modeling of increased deformations areas of the Earth’s crust that occur during the preparation of Kamchatka earthquakes. For this purpose, a generalization of the classical model of the Earth’s crust co-seismic deformations, proposed by Yu. Okada, was made. The generalization is consisted in the introduction of increasing coefficients depending on the seismic efficiency. Based on the developed model, the deformation fields, that occurred during the preparation of two Kamchatka earthquakes, were simulated. It is shown that the areas of increased deformations extend hundreds of kilometers from the sources of upcoming earthquakes both on the surface of the Earth’s crust and in its thickness.

Key words: mathematical modeling, deformation of the earth’s crust, earthquake focus, seismic efficiency, pre-seismic anomalies

DOI: 10.26117/2079-6641-2022-41-4-32-46

Original article submitted: 02.12.2022

Revision submitted: 06.12.2022

For citation. Gapeev M. I. Estimating the increased deformations areas that occur during the preparation of Kamchatka earthquakes. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 41: 4, 32-46. DOI: 10.26117/2079-6641-2022-41-4-32-46

Funding. The work was carried out as part of the implementation of the state task АААА-А21-121011290003-0.

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0 International License (

© Gapeev M. I., 2022


  1. Gregori G. P., Poscolieri M., Paparo G., De Simone S., Rafanelli C., Ventrice G. Storms of crustal stress and AE earthquake precursors. Natural Hazards and Earth System Sciences, 2010, 10, 319–337. DOI: 10.5194/nhess-10-319-2010.
  2. Uyeda S., Nagao T., Kamogawa M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics, 2009, 470, 205–213. DOI: 10.1016/j.tecto.2008.07.019
  3. Chen C.-H, Liu J.-Y., Lin P.Y., Yen H.-Y., Hattori K., Liang W.-T., Chen Y.-I., Yeh Y-H, Zeng X. Pre-seismic geomagnetic anomaly and earthquake location. Tectonophysics, 2010, 489, 240–247. DOI: 10.1016/j.tecto.2010.04.018
  4. Shah M., Jin S. Pre-seismic ionospheric anomalies of the 2013 MW = 7:7 Pakistan earthquake from GPS TEC and COSMIC observations, Geodesy and Geodynamics, 2018, 9:5, 378–387. DOI: 10.1016/j.geog.2017.11.008
  5. Rulenko O.P. Marapulets Y. V., Kuz’min Y.D.3, Solodchuk A. A. Joint perturbation in geoacoustic emission, radon, thoron, and atmospheric electric field based on observations in Kamchatka, 2019, 5, 76–78. DOI: 10.31857/S0002-33372019576-86
  6. Kopylova G., Kasimova V., Lyubushin A., Boldina S. Variability in the Statistical Properties of Continuous Seismic Records on a Network of Stations and Strong Earthquakes: A Case Study from the Kamchatka Peninsula, 2011–2021. Appl. Sci., 2022, 8658:12. DOI: 10.3390/app12178658
  7. Saltykov V. A. On the possibility of using the tidal modulation of seismic waves for forecasting earthquakes. Izvestiya, Physics Of The Solid Earth, 2017, 53:2, 250–261. DOI: 10.1134/S1069351317010128
  8. Marapulets Yu. V., Shevtsov B. M. Mezomasshtabnaya akusticheskaya emissiya [Mesoscale acoustic emission]. Vladivostok, Dal’nauka, 2012, 126 (In Russian)
  9. Lukovenkova O. O., Malkin E. I., Mishchenko M. A., Solodchuk A.A. Anomalies in electromagnetic and geoacoustic emission signals before Kamchatka earthquakes ( M_L\geq 4.75 ) in 2013. Vestnik KRAUNC. Fiz.-mat. nauki, 2021, 34:1, 137–149.DOI: 10.26117/2079-6641-2021-34-1-137-149 (In Russian)
  10. Turcotte D., Shubert G. Geodynamics, 3rd Edition. Cambridge, Cambridge University Press, 2014, 636.
  11. Sholz C. The mechanics of earthquakes and faulting, 3rd Edition. Cambridge, Cambridge University Press, 2019, 512.
  12. Aki K., Richards P. Quantitative Seismology, 2nd ed. Cambridge, University Science Books, 2002, 704.
  13. Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1985, 75:4, 1135–1154. DOI: 10.1785/BSSA0750041135
  14. Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 1992, 82:2, 1018–1040. DOI: 10.1785/BSSA0820021018
  15. Takagi Y., Okubo S. Internal deformation caused by a point dislocation in a uniform elastic sphere. Geophysical Journal International, 2017, 208:2, 973–991. DOI: 10.1093/gji/ggw424
  16. Liu T., Fu G., She Y., Zhao C. Co-seismic internal deformations in a spherical layered earth model. Geophysical Journal International, 2020, 221:3, 1515–1531. DOI: 10.1093/gji/ggaa086
  17. Dobrovol’skij I.P. Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya [Mathematical theory of preparation and prediction of tectonic earthquake]. Moscow, Fizmatlit, 2009, 240 (In Russian)
  18. Alekseev A. S., Belonosov A. S., Petrenko V. E. O koncepcii mnogodisciplinarnogo prognoza zemletryasenij s ispol’zovaniem integral’nogo predvestnika. Vychislitel’naya sejsmologiya [On the concept of multidisciplinary earthquake prediction using an integral predictor]. Vychislitel’naya sejsmologiya [Computational seismology], 2001, 32, 81–97. (In Russian)
  19. Perezhogin A. S,., Shevtsov B. M., Sagitova R. N., Vodinchar G. M.Geoacoustic emission’s zones modeling. Mathematical Models and Computer Simulations, 2007, 19:11, 59–64. (In Russian)
  20. Perezhogin A. S., Shevtsov B. M. Models of an intense-deformed condition of rocks before earthquakes and their correlation with geo-acoustic emission. Vychislitel’nye tekhnologii, 2009, 14:3, 48–57. (In Russian)
  21. Perezhogin A. S. Geoacoustic emission zones in an elastic model of continuum. Bulletin KRASEC. Earth science, 2009, 13:1, 198–201. (In Russian)
  22. Saltykov V. A., Kugaenko Y. A. Development of near-surface dilatancy zones as a possible cause for seismic emission anomalies before strong earthquakes. Russian Journal of Pacific Geology, 6:1, 86–95. DOI: 10.1134/S1819714012010113
  23. Gapeev M. I., Marapulets Yu. V. Modeling of relative shear deformation zones before strong earthquakes in Kamchatka from 2018-2021. Vestnik KRAUNC. Fiz.-mat. nauki, 2021, 37:4, 53-66. DOI: 10.26117/2079-6641-2021-37-4-53-66 (In Russian)
  24. Novatskiy V. Teoriya uprugosti [Teoriya uprugosti]. Moscow, MIR, 1975, 872 (In Russian)
  25. Mindlin R. Force at a Point in the Interior of a Semi-Infinity Solid. Journal of Applied Physics, 1936, 7, 195–202. DOI: 10.1063/1.1745385
  26. Mindlin R., Cheng D. Nuclei of Strain in the Semi-Infinite Solid. Journal of Applied Physics, 1950, 21:9, 926–930. DOI: 10.1063/1.1699785
  27. Steketee J. A. On Volterra’s disloacations in a semi-infinity elastic medium. Canadian Journal of Physics, 1958, 36:2, 192–205. DOI: 10.1139/p58-024
  28. Gusev A. A., Melnikova V. N. Relations between magnitudes: global and Kamchatka data. Journal of Volcanology and Seismology, 1990, 6, 55–63. (In Russian)
  29. Bath M., Duda S. J. Earthquake volume, fault plane area, seismic energy, strain, deformation and related quantities. Annals of Geophysics, 1964, 17:3, 353–368. DOI: 10.4401/ag-5213
  30. Kanamori H. The radiated energy of the 2004 Sumatra-Andaman earthquake. In: Earthquakes: Radiated Energy and the Physics of Faulting (Geophysical Monograph Series). Washington, American Geophysical Union, 59–60.
  31. Rebeckij Yu. L. Tektonicheskie napryazheniya i prochnost’ prirodnyh massivov [Tectonic stresses and strength of natural massifs]. M: IKC ¾Akademkniga¿, 2007, 406 (In Russian)

Gapeev Maksim Igorevich – Postgraduate student of Vitus Bering Kamchatka State University, Petropavlovsk-Kamchatsky, Junior Researcher, Lab. of Acoustic Research, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, Paratunka, Russia, ORCID 0000-0001-5798-7166.