Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. vol. 39. no. 2. pp. 119–135. ISSN 2079-6641

Contents of this issue

Read Russian Version US Flag

INFORMATION AND COMPUTATION TECHNOLOGIES

MSC 68T27

Research Article

Optimization of the structure of variable-valued logical functions when adding new production rules

D. P. Dimitrichenko

Institute of Applied Mathematics and Automation KBSC RAS, 360000, Nalchik, Shortanova st., 89a, Russia

E-mail: dimdp@rambler.ru

This paper proposes a theoretical justification and practical implementation in the form of an algorithm for modifying variable-valued unions of functions when adding new production rules to an already formed (within the original subject area) union classifier. The proposed algorithm is based on the application of the method of
constructive transformation of variable-valued relationships of classifiers built on the basis of a system of production rules encoded using variable-valued predicates. The properties of changing the structure of production clauses and knowledge development clauses in the process of adding new production rules are studied. Conditions are found under which these clauses are guaranteed to vanish in the connection, or are in a constant form. Taking into account the conditions in the proposed algorithm makes it possible to reduce the number of necessary operations and reduce the computational costs for the required transformations.

Key words: combination of operations, variable-valued predicate, variablevalued logical function, training sample, production rule, mixed classifier, logical neural network.

DOI: 10.26117/2079-6641-2022-39-2-119–135

Original article submitted: 04.07.2022

Revision submitted: 20.08.2022

For citation. Dimitrichenko D.P. Optimization of the structure of variable-valued logical functions when adding new production rules. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 39: 2, 119–135. DOI: 10.26117/2079-6641-2022-39-2-119–135

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

The content is published under the terms of the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Dimitrichenko D.P., 2022

References

  1. Haykin S. S. Nejronnye seti: polnyj kurs, 2-e izdanie [Neural networks: a complete course, 2nd edition]. Moscow, Williams Publishing House, 2008, pp. 1103 (In Russian)
  2. Shibzukhov Z. M. Konstruktivnye metody obuchenija nejronnyh setej [Constructive methods for training neural networks]. Moscow, Nauka, 2006, p. 159 (In Russian)
  3. Riazanov V. V., Sen’ko O. V., Zhuravlev Y. I. Mathematical methods for pattern recognition: logic, optimization, algebraic approaches, Proceedings. Fourteenth International Conference on Pattern Recognition, 1998, vol. 6, pp. 831–834, DOI: 10.1109/ICPR.1998.711278.
  4. Uddin M. F., Rizvi S., Razaque A., Proposing Logical Table Constructs for Enhanced Machine Learning Process, in IEEE Access, vol. 6, 2018, pp. 47751-47769 DOI: 10.1109/ACCESS.2018.2866046.
  5. Sathe J. B., Mali M. P. A hybrid Sentiment Classification method using Neural Network and Fuzzy Logic, 2017 11th International Conference on Intelligent Systems and Control (ISCO), 2017, pp. 93–96, DOI: 10.1109/ISCO.2017.7855960
  6. Kamada S., Ichimura T. An Object Detection by using Adaptive Structural Learning of Deep Belief Network, 2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8, DOI: 10.1109/IJCNN.2019.8852145
  7. Gao X., Yang T., Peng J. Logic-Enhanced Adaptive Network-Based Fuzzy Classifier for Fall Recognition in Rehabilitation, in IEEE Access, 2020, vol. 8, pp. 57105–57113, DOI: 10.1109/ACCESS.2020.2982049.
  8. Cpalka K. A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems, in IEEE Transactions on Neural Networks, 2009, vol. 20, no 4, pp. 701–714, DOI: 10.1109/TNN.2009.2012425.
  9. Eiamkanitchat N., Theera-Umpon N., Auephanwiriyakul S. A novel neuro-fuzzy method for linguistic feature selection and rule-based classification. 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), 2010, pp. 247–252, DOI: 10.1109/ICCAE.2010.5451487.
  10. Efanov D., Osadchy G., Zueva M. Specifics of Error Detection with Modular Sum Codes in Concurrent Error-Detection Circuits Based on Boolean Complement Method, 2021 IEEE East-West Design and Test Symposium (EWDTS), 2021, pp. 1-–11, DOI: 10.1109/EWDTS52692.2021.9581036.
  11. Gebreyohannes S., Edmonson W., Esterline A., Homaifar A., Kibret N. Fuzzy classification context for the responsive and formal design process, 2017 Annual IEEE International Systems Conference (SysCon), 2017, pp. 1–8, DOI: 10.1109/SYSCON.2017.7934797.
  12. Jean-Marc B., Lafitte O. Combining weak classifiers: a logical analysis, 2021 23rd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2021, pp. 178–181, DOI: 10.1109/SYNASC54541.2021.00038.
  13. Lyutikova L. A. Modelirovanie i minimizacija baz znanij v terminah mnogoznachnoj logiki predikatov [Modeling and minimization of knowledge bases in terms of multivalued logic of predicates]. Nalchik. Preprint, 2006, p. 33 (In Russian)
  14. Lyutikova L. A. Using multivalued logic for qualitative data analysis. Journal of Physics: Conference Series, 2021, vol. 2131, no 3, p. 032046.
  15. Lyutikova L.A., Shmatova E.V. Logicheskij analiz korrektirujushhih operacij dlja postroenija kachestvennogo algoritma raspoznavanija [Logical analysis of corrective operations to build a high-quality recognition algorithm], Software products and systems. 2016, no. 1 (113). pp. 108-112. (In Russian)
  16. Dimitrichenko D.P. Ispol’zovanie nejronnyh setej dlja povyshenija jeffektivnosti peremennoznachnyh logicheskih funkcij [Using neural networks to improve the efficiency of variable-valued logic functions], Bulletin of ISTU. no. 10 (105), 2015, pp. 12-16. (In Russian)
  17. Dimitrichenko D. P. Primenenie peremennoznachnyh logicheskih funkcij i nejronnyh setej v sistemah prinjatija reshenij [Application of variable-valued logical functions and neural networks in decision-making systems], Bulletin of KRAUNC. Phys.-Math. Sci. 2016, no. 4-1(16). pp.93-100. (In Russian)
  18. Barsky A.B. Nejronnye seti: raspoznavanie, upravlenie, prinjatie reshenij [Neural networks: recognition, control, decision making]. Moscow, Finance and statistics, 2004, p. 176 (In Russian)
  19. Barsky A.B. Logicheskie nejronnye seti [Logical neural networks]. Internet University of Information Technologies, 2007, p. 352 (In Russian)
  20. Gorbatov V. A. Fundamental’nye osnovy diskretnoj matematiki [Fundamental bases discrete mathematics. Information mathematics]. Internet University of Information Technologies, 2007, p. 352 (In Russian)
  21. Dimitrichenko D. P. A Method for Diagnosing a Robotic Complex Using Logical Neural Networks Apparatus, 2021 International Russian Automation Conference (RusAutoCon), 2021, pp. 907–911 DOI: 10.1109/RusAutoCon52004.2021.9537419.
  22. Aho Al’fred V., Hopkroft Dzhon Je., Ul’man Dzheffri D. Struktury dannyh i algoritmy [Data Structures and Algorithms]. Moscow, Vil’jams, 2000, p. 400 (In Russian).

Dimitrichenko Dmitry Petrovich – Ph.D. (Tech.), Researcher, Department of Neural Networks and Machine Learning, Institute of Applied Mathematics and Automation, Kabardino-Balkarian Republic, Nalchik, Russia, ORCID 0000-0003-2399-3538.