Vestnik КRAUNC. Fiz.-Mat. Nauki. 2025. vol. 51. no. 2. P. 28 – 44. ISSN 2079-6641

MATHEMATICS
https://doi.org/10.26117/2079-6641-2025-51-2-28-44
Research Article
Full text in Russian
MSC 35R30

Contents of this issue

Read Russian Version

On Solvability of One Inverse Problem for a Fourth Order Equation in the Rectangular Domain

A. B. Bekiev^{\ast}

Karakalpak State University named after Berdakh, 230112, Nukus city, Ch.Abdirov St. 1, Uzbekistan

Abstract. In this paper, for the fourth order equation in the rectangular domain, the inverse problem of finding the unknown right-hand side is considered. The solution of the problem is constructed as a sum of series of eigenfunctions and its associated functions of the corresponding spectral problem. The eigenfunctions of the corresponding spectral problem and its associated functions are complete system and form a Riesz basis in the space L_2(0,1). The uniqueness of the solution to the inverse problem follows from the completeness of the system of eigen and associated functions. Sufficient conditions are established for the given initial functions, which guarantee existence and stability theorems for the solution of the problem. In a closed region, the absolute and uniform convergence of the found solution to the inverse problem is shown in the form of a series, as well as series obtained by term-by-term differentiation with respect to t and x, three and four times, respectively. It has also been proven that the solution to the inverse problem is stable according to the norms of spaces L_2(0,1) , W^n_2(0, 1) and C(\Omega), with respect to changes in input data.

Key words: fourth order equation, inverse problem, method of separation of variables, uniqueness, existence, stability.

Received: 29.03.2025; Revised: 23.06.2025; Accepted: 29.06.2025; First online: 17.09.2025

For citation. Bekiev A. B. On solvability of one inverse problem for a fourth order equation in the rectangular domain. Vestnik KRAUNC. Fiz.-mat. nauki. 2025, 51: 2, 28-44. EDN: TNKVGB. https://doi.org/10.26117/2079-6641-2025-51-2-28-44.

Funding. The work was carried out without the support of funds.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. The author participated in the writing of the article and is fully responsible for the submission of the final version of the article to print.

^{\ast}Correspondence: E-mail: ashir1976@mail.ru

The content is published under the terms of the Creative Commons Attribution 4.0 International License

© Bekiev A. B., 2025

© Institute of Cosmophysical Research and Radio Wave Propagation, 2025 (original layout, design, compilation)

References

  1. Smirnov M. M. Model’noe uravnenie smeshannogo tipa chetvertogo porjadka [Model equation of mixed type of the fourth order], 1972. 123 p. (In Russian).
  2. Amirov Sh., Kozhanov A. I. Global’naja razreshimost’ nachal’no-kraevyh zadach dlja nekotoryh nelinejnyh analogov uravnenija Bussineska [The final problem for the fourthorder equation with a lower member], Matem. zametki, 2016. vol. 99, no 2, p. 171–180 DOI: 10.14498/vsgtu1523 (In Russian).
  3. Huntul M. J., Abbas V. An inverse problem of fourth-order partial differential equation with nonlocal integral condition, Advances in Continuous and Discrete Models, 2022. no. 55 (2022), pp. 1–27 https://doi.org/10.1186/s13662-022-03727-3
  4. Apakov Yu.P., Meliquzieva D. M. On a boundary problem for the fourth order equation with the third derivative with respect to time, Bulletin of the Karaganda University. Mathematics Series, 2023. no. 4(112), pp. 30-40 https://doi.org/10.31489/2023m4/30-40
  5. Amanov D., Murzambetova M.B. Kraevaja zadacha dlja uravnenija chetvertogo porjadka s mladshim chlenom [The final problem for the fourth-order equation with a lower member], Vestnik Udmurtskogo universiteta. Matematika. Mehanika. Komp’juternye nauki, 2013. no 1, p. 1-10.(In Russian).
  6. Bekiev A. B., Shihiev R. M. Razreshimost’ kraevoj zadachi dlja smeshannogo uravnenija chetvertogo porjadka [Solvability of the boundary value problem for a mixed fourth-order equation], Adyghe International Scientific Journal, 2022. vol. 22, no 2, p. 11-20. (In Russian).
  7. Megraliev Ja. T., Velieva B. K. Obratnaja kraevaja zadacha dlja linearizovannogo uravnenija Benni–Ljuka s nelokal’nymi uslovijami [Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions], Vestnik Udmurtskogo universiteta. Matematika. Mehanika. Komp’juternye nauki, 2019. vol. 29, no. 2. (In Russian).
  8. Yuldashev T. K. Ob odnom smeshannom differencial’nom uravnenii chetvertogo porjadka [On one mixed differential equation of the fourth order], Izvestija Instituta matematiki i informatiki UdGU, 2016. vol. 1(47), p. 119-128 mi.mathnet.ru/iimi329 (In Russian).
  9. Otarova Zh. A. Razreshimost’ i spektral’nye svojstva samosoprjazhennyh zadach dlja uravnenija chetvertogo porjadka [Solvability and spectral properties of self-adjoint problems for a fourth-order equation], Uzb. mat. zh., 2008. no. 2, p. 74-80. (In Russian).
  10. Assanova A. T. Imanchiyev A. E., Kadirbayeva Zh. M. A nonlocal problem for loaded partial differential equations of fourth order, Bulletin of the Karaganda University. Mathematics, 2020. vol. 97, no 1, p. 6-16 https://doi.org/10.31489/2020m1/6-16.
  11. Berdyshev A. S., Cabada A., Kadirkulov B. J. The Samarskii-Ionkin type problem for the fourth order parabolic equation with fractional differential operator. Computers and Mathematics with Applications, 2011. vol. 62, p. 3884-3893.
  12. Urinov A. K., Usmonov D. A Nelokal’naja nachal’no-granichnaja zadacha dlja vyrozhdajushhiegosja uravnenija chetvertogo porjadka s drobnoj proizvodnoj Gerasimova-Kaputo [Nonlocal initial-boundary value problem for degenerate fourth-order equations with a Herasimov-Caputo fractional derivative], Vestnik KRAUNC. Fiz.-mat. nauki, 2023. vol. 42, no. 1, p. 123-139 https://doi.org/10.26117/2079-6641-2023-42-1-123-139
  13. Kilichov O. Sh., Ubaydullaev A. N. On one boundary value problem for the fourth-order equation in partial derivatives, Vestnik КRAUNC. Fiz.-Mat. nauki., 2022. vol. 39, no. 2, pp. 32-41 DOI: 10.26117/2079-6641-2022-39-2-32-41
  14. Dzhuraev T. D., Sopuev A. K teorii differencial’nyh uravnenij v chastnyh proizvodnyh chetvertogo porjadka [On the theory of partial differential equations of the fourth order], 2000. 144 s. (In Russian).
  15. Sabitov K. B. Nachal’no-granichnye zadachi dlja uravnenija kolebanij balki s uchjotom ejo vrashhatel’nogo dvizhenija pri izgibe [Initial-boundary problems for the equation of the beam’s oscillations, taking into account its rotational motion during bending], Differencial’nye uravnenija, 2021. vol. 57, no 3, P. 364-374. (In Russian).
  16. Sabitov K.B. Kolebanija plastiny s granichnymi uslovijami «sharnir–zadelka» [Oscillations of the console beam ], Vestn. Sam. gos. tehn. un-ta. Ser. Fiz.-mat. nauki., 2022. vol. 26, no. 4, p. 650-671 DOI: 10.14498/vsgtu1950 (In Russian).
  17. Sabitov K. B. Kolebanija konsol’noj balki [Cantilever beam oscillations], Prikladnaja matematika i Fizika, 2021. vol. 53, no. 1, P. 5-12 DOI 10.52575/2687-0959-2021-53-1-5-12 (In Russian).
  18. Dmitriev V. B. Kraevaja zadacha s nelokal’nym granichnym usloviem dlja uravnenija chetvertogo porjadka [The boundary value problem with nonlocal boundary conditions for the fourth-order equation], Vestnik Samarskogo universiteta. Estestvennonauchnaja serija, 2016, P. 32-50. (In Russian).
  19. Sabitov K. B., Martem’janova N. V. Nelokal’naja obratnaja zadacha dlja uravnenija smeshannogo tipa [Nonlocal inverse problem for a mixed type equation], Izv. vuzov. Matem., 2011. no 2, S. 71-85 mi.mathnet.ru/ivm7235. (In Russian).
  20. Denisov A. M. Vvedenie d teoriyu obratnykh zadach [Elements of the Theory of inverse Problems]. Moscow, Izd-vo MGU, 1994. P. 208.(In Russian).
  21. Kabanihin S. I. Obratnye i nekorrektnye zadachi, [Obverse and incorrect problems]. Novosibirsk: Sibirskoe nauchnoe izdatel’stvo, 2009. 457 p. (In Russian).
  22. Kozhanov A. I. Obratnye zadachi vosstanovleniia pravoi chasti spetsialnogo vida v parabolicheskom uravnenii [Inverse problems of recovering the right-hand side of a special type of parabolic equations. Mathematical Notes]. Matematicheskie zametki SVFU, 2016, vol. 23, no 4, pp. 31-45.(In Russian).
  23. Kozhanov A. I. Nelinejnye nagruzhennye uravnenija i obratnye zadachi, [Nonlinear loaded equations and inverse problems]. Zh. vychisl. matem. i matem. fiz., 2004. vol. 44, no 4, P. 694-716. (In Russian).
  24. Romanov V. G. Obratnye zadachi matematicheskoj fiziki, [Inverse Problems of Mathematical Physics]. M.: Nauka, 1984. 264 p. (In Russian).
  25. Kamynin V. L. Obratnaja zadacha opredelenija mladshego kojefficienta v parabolicheskom uravnenii pri uslovii integral’nogo nabljudenija, [The inverse problem of determining the lower-order coefficient in a parabolic equation under the condition of integral observation], Matem. zametki, 2013. vol. 94, no. 2, P. 207-217 https://doi.org/10.4213/mzm9370 (In Russian).

Information about the author

Bekiev Ashirmet Bekievich – PhD (Phy. & Math.), Dosent, Department of Differential Equation, Karakalpak State University, Nukus, Uzbekistan, ORCID 0000-0001-8630-4360.