MSC 49J15, 49N05

Research Article

On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones

R. F. Shamoyan, E. B. Tomashevskaya

Department of Mathematics, Bryansk State Technical University, Bryansk 241050, Russia
E-mail: rsham@mail.ru, tomele@mail.ru

We introduce new multifunctional mixed norm analytic Herz-type spaces in tubular domains over symmetric cones and provide new sharp embedding theorems for them. Some results are new even in case of onefunctional holomorphic spaces. Some new related sharp results for new multifunctional Bergman-type spaces will be also provided under one condition on Bergman kernel.

Keywords: Bergman spaces, Herz spaces, tubular domains over symmetric cones, embedding theorems, analytic functions

DOI: 10.26117/2079-6641-2021-34-1-63-79

For citation. Shamoyan R.F., Tomashevskaya E.B. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones. *Vestnik KRAUNC. Fiz.-mat. nauki.* 2021, 34: 1, 63-79. DOI: 10.26117/2079-6641-2021-34-1-63-79

The content is published under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.ru)

© Shamoyan R.F., Tomashevskaya E. B, 2021

1. Introduction

The goal of this paper to provide new sharp embedding theorems for new multifunctional analytic function spaces of several complex variables in typical unbounded Siegel domains of second type, namely in tubular domains over symmetric cones. Note various new sharp such type embedding results in context of onefunctional analytic Bergman, Hardy or Bergman type spaces appeared recently in several papers. We refer for such type results to [8] - [4], [3] - [24]. And also to various references there. We also note that various embedding theorems have many applications in the study of actions of various integral operators in analytic function spaces and in the study of various related problems in analytic one function theory. We refer for these issues to [14] - [19], [26] - [27], [31] - [35].

Funding. The study was carried out without financial support from foundations.
Note however multifunctional analytic function spaces and various sharp embedding theorems for them are less studied. This paper probably provide first such type sharp results in unbounded tubular domains over symmetric cones. Related results for new multifunctional analytic function spaces of several complex variables, but in context of bounded domains namely in some bounded strongly pseudoconvex domains with smooth boundary can be seen in recent paper of the first author [25].

Let \(T_\Omega = V + i\Omega \) be the tube domain over an irreducible symmetric cone \(\Omega \) in the complexification \(V^C \) of an \(n \)-dimensional Euclidean space \(V \). \(\mathcal{H}(T_\Omega) \) denotes the space of all holomorphic functions on \(T_\Omega \). Following the notation of [28] and [29] we denote the rank of the cone \(\Omega \) by \(r \) and by \(\Delta \) the determinant function on \(V \).

Letting \(V = \mathbb{R}^n \), we have as an example of a symmetric cone on \(\mathbb{R}^n \) the Lorentz cone \(\Lambda_n \) which is a rank 2 cone defined for \(n \geq 3 \) by

\[
\Lambda_n = \{ y \in \mathbb{R}^n : y_1^2 - \cdots - y_n^2 > 0, y_1 > 0 \}.
\]

The determinant function in this case is given by the Lorentz form

\[
\Delta(y) = y_1^2 - \cdots - y_n^2.
\]

(see for example [29])

Also, if \(t, k \in \mathbb{R}^r \), then \(t < k \) means \(t_j < k_j \) for all \(1 \leq j \leq r \).

For \(\tau \in \mathbb{R}_+ \) and the associated determinant function \(\Delta(x) \) [29] we set

\[
A^\infty_\tau(T_\Omega) = \left\{ F \in \mathcal{H}(T_\Omega) : \| F \|_{A^\infty_\tau} = \sup_{x+iy \in T_\Omega} |F(x+iy)|\Delta^\tau(y) < \infty \right\}, \tag{1}
\]

It can be checked that this is a Banach space.

For \(1 \leq p, q < +\infty \) and \(\nu \in \mathbb{R}, \nu > -1 \) we denote by \(A^{p,q}_\nu(T_\Omega) \) the mixed-norm weighted Bergman space consisting of analytic functions \(f \) in \(T_\Omega \) such that

\[
\| F \|_{A^{p,q}_\nu} = \left(\int_{\Omega} \left(\int_{V} |F(x+iy)|^p \Delta^\nu(y)dy \right)^{q/p} dx \right)^{1/q} < \infty.
\]

This is a Banach space.

Replacing above \(A \) by \(L \) we will get as usual the corresponding larger space of all measurable functions in tube over symmetric cone with the same quasinorm (see [28],[31]).

It is known that the \(A^{p,q}_\nu(T_\Omega) \) space is nontrivial if and only if \(\nu > -1 \) (see [30],[29]).

When \(p = q \) we write (see [29])

\[
A^{p,q}_\nu(T_\Omega) = A^p_\nu(T_\Omega).
\]

This is the classical weighted Bergman space with usual modification when \(p = \infty \).

The (weighted) Bergman projection \(P_\nu \) is the orthogonal projection from the Hilbert space \(L^2_\nu(T_\Omega) \) onto its closed subspace \(A^\infty_\nu(T_\Omega) \) and it is given by the following integral formula (see [29])

\[
P_\nu f(z) = C_\nu \int_{T_\Omega} B_\nu(z,w)f(w)dV_\nu(w), \tag{2}
\]
where
\[B_\nu(z,w) = C_\nu \Delta^{-\left(\nu + \frac{n}{r}\right)} \left(\frac{(z - w)}{i} \right) \]
is the Bergman reproducing kernel for \(A^2_\nu(T_\Omega) \) (see [28],[29]).

Here we used the notation \(dV_\nu(w) = \Delta^{-\left(\nu + \frac{n}{r}\right)}(v) dudv \). Below and here we use constantly the following notations \(w = u + iv \in T_\Omega \) and also \(z = x + iy \in T_\Omega \).

Hence for any analytic function from \(A^2_\nu(T_\Omega) \) the following integral formula is valid (see also [29])
\[f(z) = C_\nu \int_{T_\Omega} B_\nu(z,w)f(w)dV_\nu(w), \quad (3) \]

In this case sometimes below we say simply that the \(f \) function allows Bergman representation via Bergman kernel with \(\nu \) index.

Note that these assertions have direct copies in simpler cases of analytic function spaces in unit disk, polydisk, unit ball, upperhalfspace \(\mathbb{C}_+ \), and in spaces of harmonic functions in the unit ball or upperhalfspace of Euclidean space \(\mathbb{R}^n \). These classical facts are well-known and can be found, for example, in [19], [27], [32] and in some items from references there.

Above and throughout the paper we write \(C \) (sometimes with indexes \(\alpha \)) to denote positive constants which might be different each time we see them (and even in a chain of inequalities), but are independent of the functions or variables being discussed.

The problem which we consider in this paper is classical (see, for example, [3] - [27]), we wish to find sharp (or not) conditions on positive Borel measure \(\mu \) in \(T_\Omega \) so that
\[\int_{T_\Omega} |f(z)|^p d\mu(z) \leq c\|f\|_Y, \, Y \subset H(T_\Omega), \]
where \(Y \) is a quasinormed subspace of \(H(T_\Omega) \), \(0 < p < \infty \).

We mention that in the case of the Hardy \(H^p \) space in the unit disk and for \(H^p(B^k) \) in the ball such type result was obtained by D.Luecking and P. Mercer with J. Cima in [14] - [15] and L. Carleson (see [9], [10], [12]). The case of weighted Bergman spaces investigated in [16].

For Bergman space \(Y = A^p_\alpha(T_\Omega) \), \(0 < p < \infty, \, \alpha > -1 \), (or Bergman type function spaces) this type of problem was considered before by various authors and solved for example in papers [23] - [24]. For various other cases (spaces with more complicated norms or quasinorms) it is still open.

We mention a series of new sharp results of first author and authors of this paper (see [3] - [25]).

The plan of this paper is the following. We collect preliminaries and related assertions in our next section. In the third section we collect some known sharp results closely related with our work. The last section is devoted to some new embedding theorems. Note we use actively some machinery which was recently developed in [23] - [24].

Note also some assertions of this paper were taken from our previous paper [23] - [24], where some results were proved in less general situation namely in case of tubular domain in \(\mathbb{C}^m \) and for one function case \(m = 1 \).

One of the intentions of this paper is to generalize them to multyfunctional spaces tubular domains over symmetric cones.

Various related assertions (sharp embedding theorems in analytic function spaces in tubular domains over symmetric cones) can be seen in [23] - [24].
The theory of analytic spaces on tubular domains over symmetric cones is well-developed by various authors during last decades (see [23] - [24] and various references there). One of the goals of this paper among other things is to define for the first time in literature new mixed norm analytic spaces in tubular domains over symmetric cones and to establish some basic properties of these spaces. We believe that this new interesting objects can serve as a base for further generalizations and investigations in this active research area.

In main part of paper we will turn to study of certain embedding theorems for some new mixed norm analytic classes in tubular domains over symmetric cones in \mathbb{C}^n. Proving estimates and embedding theorems in tubular domains we heavily use the technique which was developed recently in [23] - [24]. In our embedding theorem and inequalities for analytic function spaces in tubular domains over symmetric cones the so-called Carleson-type measures constantly appear. We are ending with some historical remarks on this important topic now. Carleson measures were introduced by Carleson [9] in his solution of the corona problem in the unit disk of the complex plane, and, since then, have become an important tool in analysis, and an interesting object of study per se. Let A be a Banach space of holomorphic functions a domain $T_\Omega \subset \mathbb{C}^n$; given $p \geq 1$, a finite positive Borel measure μ on T_Ω is a Carleson measure of A (for p) if there is a continuous inclusion $A \rightarrow L^p(\mu)$, that is there exists a constant $C > 0$ such that

$$\forall f \in A \quad \int_{T_\Omega} |f(z)|^p d\mu(z) \leq C||f||_A^p.$$

Carleson studied this property [9] taking as Banach space A the Hardy spaces in unit disk $H^p(\Delta)$, and proved that a finite positive Borel measure μ is a Carleson measure of $H^p(\Delta)$ for p if and only if there exists a constant $C > 0$ such that $\mu(S_{\theta_0,h}) \leq Ch$ for all sets $S_{\theta_0,h} = \{re^{i\theta} \in \Delta : 1 - h \leq r < 1, \quad |\theta - \theta_0| < h\}$ (see also [10], [16]); in particular the set of Carleson measures of $H^p(\Delta)$ does not depend on p.

In 1975, W. Hastings [12] (see also V. Oleinik and B. Pavlov [16] and L. Oleinik [17]) proved a similar characterization for the Carleson measure of the Bergman spaces $A^p(\Delta)$, still expressed in terms of the sets $S_{\theta_0,h}$. Later J. Cima and W. Wogen [26] characterized Carleson measures for Bergman spaces in the unit ball $B^n \subset \mathbb{C}^k$, and J. Cima and P. Mercer [15] characterized Carleson measures of Bergman spaces in unit ball, showing in particular that the set of Carleson measures of $A^p(T_\Omega)$ is independent of $p \geq 1$.

2. Preliminaries on geometry of tubular domains over symmetric cones

In this section we will collect several very usefull assertions from [28] - [31] mainly concerning so-called r-lattices that will be used rather often in all proofs of our sharp embedding theorems below.

Let $T_\Omega \subset \mathbb{C}^n$ be a bounded tubular domains over symmetric cones in \mathbb{C}^n. We shall use the following notations:

- $\delta : T_\Omega \rightarrow \mathbb{R}^+$ will denote the determinant function from the boundary, that is $\delta(z) = \Delta(Imz)$. Let $dv_t(z) = (\delta(z))^t dv(z), \ t > -1$;

• v will be the Lebesgue measure on T_Ω;

• $H(T_\Omega)$ will denote the space of holomorphic function on T_Ω, endowed with the topology of uniform convergence on compact subsets;

• $B : T_\Omega \times T_\Omega \to \mathbb{C}$ will be the Bergman kernel of T_Ω. Note that if B is kernel of type t, $t \in \mathbb{N}$, then B_t is kernel of type st, $s \in \mathbb{N}, t \in \mathbb{N}$. This follows directly from definition (see [23] - [24], [28] - [31]). Note $B = B_{2n/r}$ (see [23] - [24], [28] - [31]);

• given $r \in (0, \infty)$ and $z_0 \in T_\Omega$, we shall denote by $B_{T_\Omega}(z_0, r)$ the Bergman ball.

See, for example, [23] - [24], [28] - [31], for definitions, basic properties and applications to geometric function theory of the Bergman distance and [23] - [24], [28] - [31] for definitions and basic properties of the Bergman kernel. Let us now recall a number of vital results proved in T_Ω. The first two give information about the shape of Bergman balls:

Lemma 1. (see [23] - [24], [28] - [31]) Let $T_\Omega \subset \mathbb{C}^n$ be a bounded tubular domains over symmetric cones, and $r \in (0, \infty)$. Then

$$v(B_{T_\Omega}(\cdot, r)) \approx \delta^{2n/r},$$

where the constant depends on r.

Lemma 2. (see [23] - [24], [28] - [31]) Let $T_\Omega \subset \mathbb{C}^n$ be a bounded tubular domains over symmetric cones. Then there is $C > 0$ such that

$$\frac{C}{1-r} \delta(z_0) \leq \delta(z) \leq \frac{1-r}{C} \delta(z_0)$$

for all $r \in (0, \infty)$, $z_0 \in T_\Omega$ and $z \in B_{T_\Omega}(z_0, r)$.

Definition 1. Let $T_\Omega \subset \mathbb{C}^n$ be a tubular domains over symmetric cones, and $r > 0$. An r-lattice in T_Ω is a sequence $\{a_k\} \subset T_\Omega$ such that $T_\Omega = \bigcup_{k} B_{T_\Omega}(a_k, r)$ and there exists $m > 0$ such that any point in T_Ω belongs to at most m balls of the form $B_{T_\Omega}(a_k, R)$, where $R = \frac{1}{2}(1+r)$.

Note by Lemma 2, \(v_{\alpha}(B_{T_\Omega}(a_k, R)) = \int_{B_{T_\Omega}(a_k, R)} \delta^\alpha(z)dv(z) = (\delta^\alpha(a_k))v(B_{T_\Omega}(a_k, R)), \alpha > -1.

The existence of r-lattice intubular domains over symmetric cones is ensured by the following

Lemma 3. (see [23] - [24], [28] - [29], [36] - [39]) Let $T_\Omega \subset \mathbb{C}^n$ be a tubular domains over symmetric cones. Then for every $r \in (0, \infty)$ there exists an r-lattice in T_Ω, that is there exists $m \in \mathbb{N}$ and a sequence $\{a_k\} \subset T_\Omega$ of points such that $T_\Omega = \bigcup_{k=0}^{\infty} B_{T_\Omega}(a_k, r)$ and no point of T_Ω belongs to more than m of the balls $B_{T_\Omega}(a_k, R)$, where $R = \frac{1}{2}(1+r)$.

We will call r-lattice sometimes the family $B_{T_\Omega}(a_k, r)$. Dealing with B Bergman kernel we always assume $|B(z, a_k)| \asymp |B(a_k, a_k)|$ for any $z \in B_{T_\Omega}(a_k, r)$, $r \in (0, \infty)$ (see [23] - [24], [28] - [31]). Let $m = (2n/r)l$, $l \in \mathbb{N}$. Then $|B_m(z, a_k)| \asymp |B_m(a_k, a_k)|$, $z \in B_{T_\Omega}(a_k, r)$, $r \in (0, \infty)$. This fact is crucial for embedding theorems in tubular domains over symmetric cones (see also [21], [25]).
We shall use a submean estimate for non-negative plurisubharmonic functions on Bergman balls:

Lemma 4. (see [23] - [24], [28] - [29], [36] - [39]) Let $T_{\Omega} \subset \mathbb{C}^n$ be a tubular domains over symmetric cones. Given $r \in (0, \infty)$, set $R = \frac{1}{2}(1 + r) \in (0, \infty)$. Then there exists a $C_r > 0$ depending on r such that

$$\forall z_0 \in T_{\Omega}, \, \forall z \in B_{T_{\Omega}}(z_0, r), \, \chi(z) \leq \frac{C_r}{v(B_{T_{\Omega}}(z_0, r))} \int_{B_{T_{\Omega}}(z_0, R)} \chi dv$$

for every nonnegative plurisubharmonic function $\chi: T_{\Omega} \to \mathbb{R}^+$. We will use this lemma for $\chi = |f(z)|^q, \, f \in H(T_{\Omega}), \, q \in (0, +\infty)$.

Lemma 5. (see [23] - [24], [28] - [29], [36] - [39])

1) Let $\lambda > \frac{n}{p} - 1$ be fixed. Then $\Delta(y + y') \geq \Delta(y); \forall y, y' \in \Omega, |\Delta^{-\lambda}(\frac{x + iy}{r})| \leq (\Delta(y))^{-\lambda}; \forall x \in \mathbb{R}^n; y \in \Omega$.

2) Let α, β are real, then

$$I_{\alpha, \beta}(t) = \int_{\Omega} (\Delta^\alpha(y + t))(\Delta^\beta(y))dy < \infty,$$

if $\beta > -1, \alpha + \beta < (-\frac{2n}{r} + 1), \text{ and}$

$$I_{\alpha, \beta}(t) = (c_{\alpha, \beta}) \Delta^{\alpha + \beta + \frac{\beta}{r}}(t).$$

Moreover

$$I_\alpha(y) = \int_{\mathbb{R}^n} |\Delta^{-\alpha}(\frac{x + iy}{i})|dx < \infty,$$

if $\alpha > \frac{2n}{r} - 1$; and

$$I_\alpha(y) = c_\alpha (\Delta^{-\alpha + \frac{\beta}{r}}(y)),$$

where $y \in \Omega$.

Lemma 6. For any analytic function from $A^2_{\alpha}(T_{\Omega})$ the following integral formula is valid

$$f(z) = \tilde{c}_\alpha \int_{T_{\Omega}} B_\alpha(z, w)(f(w))dv_\alpha(w), z \in T_{\Omega}. \quad (*)$$

Let $1 \leq p < \infty, 1 \leq q < \infty, \frac{n}{r} \leq p_1, \frac{1}{p} + \frac{1}{p_1} = 1, \frac{n}{r} < \gamma$.

Let $f \in A^{n,q}_{\alpha}$, then $(*)$ with $\alpha > \frac{n}{r} - 1$ is valid (Bergman representation formula with α index is valid).

We now collect a few facts on the (possibly weighted) L^p-norms of the Bergman kernel and the normalized Bergman kernel. The first result is classical (see, for example, [28] - [29], [31]).

The first result is the main result of this section, and contains the weighted L^p-estimates we shall need (Forelly -Rudin estimates).

Proposition 1. Let $T_{\Omega} \subset \mathbb{C}^n$ be a tubular domains over symmetric cones, and let $z_0 \in T_{\Omega}$ and $1 \leq p < \infty$. Then

$$\int_{T_{\Omega}} |B(\zeta, z_0)|^p \delta^\beta(\zeta)dv(\zeta) \leq C\delta^{\beta - (2n/r)(p-1)}(z_0), \, -1 < \beta < (2n/r)(p-1)$$
The same result is valid for weighted Bergman kernel (see [23]).

3. Preliminary theorems

In this section we first review some known sharp embedding theorem in tubular domains over symmetric cones with smooth boundary. Let first \(\beta, \theta \in \mathbb{R}, \ p > 0 \). A (analytic) Carleson measure of \(A^p(T_\Omega, \beta) = A^p_\beta \) is a finite positive Borel measure on \(T_\Omega \) such that there is a positive continuous inclusion \(A^p(T_\Omega, \beta) \subseteq L^p(\mu) \) that is there is a constant \(c > 0 \) such that \(\int_{T_\Omega} |f|^p d\mu \leq c \|f\|^p_{A^p_\beta}, \forall f \in A^p(T_\Omega, \beta), \) Carleson measure is a finite positive Borel measure on \(T_\Omega \) such that \(\mu(B_{T_\Omega}(\cdot, r)) \leq c(B_{T_\Omega}(\cdot, r))^\theta \) for all \(r \in (0, 1) \) where the constant \(c \) might depend on \(r \). If \(\theta = 1 \) we have usual Carleson measure. (\(\beta = 0 \) case.)

We first list two known sharp embeddings in this direction (see [23] - [24] and various references there).

Theorem A. Let \(\mu \) be a positive Borel measure on \(T_\Omega, \ f \in H(T_\Omega). \) Let \(1 \leq p < \infty \). We have \(\int |f|^p d\mu \leq c \|f\|^p_{A^p} \) iff \(\mu(B_{T_\Omega}(a_k, r)) \leq v(B_{T_\Omega}(a_k, r)), \ r > 0 \) or if \(\mu(B_{T_\Omega}(\cdot, r)) \leq c(B_{T_\Omega}(\cdot, r)) \) or \(\mu(B_{T_\Omega}(a_k, r)) \leq c(\delta^{2n/r}(a_k)) \) for certain sequence \(\{a_k\} \) which is \(r \)–lattice for \(T_\Omega \).

This vital theorem was extended recently. (see [23] - [24] and various references there).

Theorem B. Let \(\mu \) be a positive Borel measure on \(T_\Omega, \ f \in H(T_\Omega). \) Let \(\theta \geq 1, \ 1 \leq p < \infty \). Then the following assertions are equivalent

1) \(\int_{T_\Omega} |f(z)|^p d\mu(z) \leq c \int_{T_\Omega} |f(z)|^p \delta^{(2n/r)(\theta-1)}(z) dv(z), \)

2) \(\mu \) is \(\theta \)–Carleson measure

3) for every \(r \in (0, 1) \) and every \(r \)–lattice \(\{a_k\} \) in \(T_\Omega \) one has \(\mu(B_{T_\Omega}(a_k, r)) \leq [v(B_{T_\Omega}(a_k, r))]^\theta, \ r > 0. \)

4) there exists \(r_0 \in (0, 1) \) so that for every \(r_0 \)–lattice \(\{a_k\} \) in \(T_\Omega, \mu(B_{T_\Omega}(a_k, r_0)) \leq c[v(B_{T_\Omega}(a_k, r_0))]^\theta. \)

The following theorem is another sharp embedding theorem for mixed norm spaces. In the unit ball case Theorem C can be seen in [3]. The proof of tubular domain case is the same as in [3] - [21] for the unit ball case and pseudoconvex domains based on some embeddings from [36].

Theorem C. (see [22]) Let \(\mu \) be positive Borel measure on \(T_\Omega, \ f \in H(T_\Omega). \) Let \(\{a_k\} \) be \(r \)–lattice. Assume \(q < p \) or \(q = p, \ r \leq p. \) Then

\[\left(\int_{T_\Omega} |f(z)|^p d\mu(z) \right)^{1/p} \leq c_0 \|f\|^p_{A^p_\beta \cap}, \]

if and only if \(\mu(B_{T_\Omega}(a, r)) \leq c_1 \delta^\tau(a), \ a \in T_\Omega \) or if and only if \(\mu(B_{T_\Omega}(a_k, r)) \leq c_2 \delta^\tau(a_k) \) for \(k = 1, 2, \ldots \) and for some constants \(c_1, c_2, \) and for some \(\tau = \tau(p, q, \nu). \)

We also refer the reader to [8] - [4], [10], [15] -[17], [3] - [27], where new sharp interesting results (embedding theorems) in this direction were recently provided.
4. Main results

We show first our two main theorems in this section. Namely, we show new two sharp embedding theorems and our arguments are mostly standard and sketchy. Results from our point are interesting enough and enlarge the list of previously known sharp results in this direction.

We define new analytic general multifunctional Herz (for \(p = q \) Bergman) spaces in tubular domains over symmetric cones with smooth boundary as spaces of \((f_k)_{k=1}^m \) functions analytic in \(T_\Omega \), so that

\[
\| (f_1, \ldots, f_m) \|_{A(p,q,m,d\mu)}^q = \sum_{k=1}^\infty \left(\int_{B(a_k,r)} \prod_{i=1}^m |f_i(z)|^p d\mu(z) \right)^{q/p} < \infty, \quad 0 < p, q < \infty,
\]

\(\mu \) is a positive Borel measure on \(T_\Omega \).

Note for \(m = 1, q = p \) in the unit ball, polydisk, tubular domains over symmetric cones these spaces are well-known (see [23] - [24] and references there). For \(m = 1 \) these are known Herz spaces.

For \(d\mu = \delta(z)dv(z) = dv_s(z) \) we write \(A(p,q,m,s) \) and if \(m = 1 \) we write \(A(p,q,d\mu) \) or \(A(p,q,s) \) if \(d\mu = dv_s \). Also, we put, for convenience, below \(\Delta_k = B(a_k,r) \) and we put \(\Delta_k^* = B(a_k,R) \), \(R = \frac{1+r}{2} \), \(k = 1, 2, \ldots \).

We put some additional condition below on Bergman kernel now which probably can be removed.

Even this additional condition based on some recent results of B.Sehba [37] can be dropped. In this paper we, for \(\alpha q > \beta + 2n/r \), always assume (this is true in the ball, see [27] for \(\beta > 0 \))

\[
\int_{B(z,r)} |B_\alpha(z,w)|^q dv_\beta(w) \leq \tilde{C} |B_{\alpha q - \beta - 2n/r}(z,\tilde{z})|,
\]

for all \(\beta > -1, q > 0, \alpha > 0 \), namely in Theorems 4 and 4, \(z, \tilde{z} \in T_\Omega \).

The proof of the necessity of condition on measure in all theorems uses standard arguments with standard test function (see, for example, [23] - [24]). We put for some \(\tau > 0 \)

\[
f_i(z) = f_w(z) = B_\tau(w,z), \quad i = 1, \ldots, m, \quad z, w, a_k \in T_\Omega
\]

and reduce the problem to onefunctional case noting that

\[
\| (f_1, \ldots, f_m) \|_{A(p,q,m,d\mu)} = \| (f_w, \ldots, f_w) \|_{A(p,q,m,d\mu)} \geq...
\]

\[
\geq c \left(\int_{\Delta_k} |f_w(z)|^{mp} d\mu(z) \right)^{1/p} \geq c (\mu(\Delta_k))^{v_1} (\delta(a_k))^v,
\]

for some \(v, v_1 > 0 \) and for some fixed \(\{a_k\} \) \(r \)-lattice or

\[
\int_{T_\Omega} \prod_{i=1}^m |f_i(z)|^p d\mu(z) \geq c \int_{\Delta_k} \prod_{i=1}^m |f_i(z)|^p d\mu(z) \geq c (\mu(\Delta_k))^{\tilde{v}_1} (\delta(a_k))^\tilde{v},
\]

for some \(\tilde{v}_1, \tilde{v} > 0 \) (depending on parameters involved). On the other hand, to estimate norms of test function in mixed norm \(A_{\alpha}^{p,q} \) or related \(A_{\alpha}^p \) Bergman spaces the condition
on kernel we put (see below) and then Forrely-Rudin type estimates must be used. We will partial omit these standard details.

Theorem 1. Let $0 < p, q < \infty$, $0 < s \leq q$, $\beta_j > -1$ for $j = 1, \ldots, m$ and let μ be a positive Borel measure on T_{Ω}. Then the following conditions are equivalent:

1. If $f_i \in A^{s}_{\beta_i}$, $i = 1, \ldots, m$, then
 \[
 \|(f_1, \ldots, f_m)\|_{A^{s}(p,q,m,d\mu)} \leq C \prod_{i=1}^{m} \|f_i\|_{A^{s}_{\beta_i}},
 \]
2. The measure μ satisfies a Carleson type condition:
 \[
 \mu(\Delta_k) \leq C \delta(a_k)^{\sum_{i=1}^{m} \frac{p(2n/r + \beta_j)}{s}}, \quad k \geq 1,
 \]
for any $\{a_k\}$ r-lattice in T_{Ω}.

Proof of Theorem 1.
Assume 2 holds and choose $f_i \in A^{s}_{\beta_i}$, $i = 1, \ldots, m$. Since $0 < s/q \leq 1$ we have, using Lemma 4 and Lemma 5 and properties of r-lattices we listed above:

\[
\|(f_1, \ldots, f_m)\|_{A^{s}(p,q,m,d\mu)}^{s/q} = \left(\sum_{k=1}^{\infty} \left(\int_{\Delta_k} \prod_{i=1}^{m} |f_i(z)|^p d\mu(z) \right)^{q/p} \right)^{s/q}
\leq \left(\sum_{k=1}^{\infty} \mu(\Delta_k)^{q/p} \max_{\Delta_k} \prod_{i=1}^{m} |f_i|^q \right)^{s/q}
\leq C \prod_{k=1}^{m} \left(\sum_{i=1}^{\infty} \delta(a_k)^{2n/r + \beta_j} \max_{\Delta_k} |f_i|^s \right)
\leq C \prod_{i=1}^{m} \|f_i\|_{A^{s}_{\beta_i}}^{s/q},
\]
and we proved implication $2 \Rightarrow 1$.

Conversely, assume 1 holds and choose $l \in \mathbb{N}$ such that $s(n+l-1) > 2n/r + \beta_i$. We use, as test functions, functions f_{ak}, $k \in \mathbb{N}$ where
\[
f_{ak}(z) = B_1(a_k, z), \quad \tilde{l} = n+l-1, \quad z \in T_{\Omega},
\]
see [23] - [24] for norm and pointwise estimates related to these functions. In particular we have based on lemmas above
\[
\|f_{ak}\|_{A^{s}_{\beta_i}} \leq C \delta(a_k)^{-n+l-1 + \frac{2n/r + \beta_i}{s}}, \quad k \geq 1, \quad 1 \leq i \leq m
\]
and
\[
\|(f_{a_1}, \ldots, f_{a_m})\|_{A^{s}(p,q,m,d\mu)} \geq \left(\int_{\Delta_k} |f_{ak}(z)|^{mp} d\mu(z) \right)^{\frac{1}{p}} \geq C \mu(\Delta_k)^{1/p} \delta(a_k)^{-m(n+l-1)}.
\]
The last two estimates give 2.

Theorem is proved.

The corresponding more general result for mixed norm spaces is the following theorem.

Theorem 2. Let $0 < p, q < \infty$, $0 < s \leq q$, $\beta_j > -1$ for $j = 1, \ldots, m$, $0 < t_i \leq s$ for $i = 1, \ldots, m$, $\sum_{i=1}^{n} 1/t_i = m/s, m \in \mathbb{N}$, and let μ be a positive Borel measure on T_{Ω}.

Then the following conditions are equivalent:

Then the following conditions are equivalent:
1. If \(f_i \in A^{s_1} \), \(i = 1, \ldots, m \), then

\[
\| (f_1, \ldots, f_m) \|_{A(p,q,m,d\mu)} \leq C \prod_{i=1}^{m} \| f_i \|_{A^{s_1}}. \tag{8}
\]

2. The measure \(\mu \) satisfies a Carleson type condition:

\[
\mu(\Delta_k) \leq C \delta(a_k)^{\sum_{i=1}^{m} \frac{p(2n/r + \beta_i)}{s}}, \quad k \geq 1,
\]

for any \(\{a_k\} \) \(r \)-lattice in \(T_\Omega \).

Proof of Theorem 2.

Since \(A(s, \beta) = A^{s_1} \), the previous theorem, combined with embeddings \(A^{s_1} \hookrightarrow A^{s} \), \(\beta = (t/s)(\beta + n/r) - (n/r) \), where \(\beta > -1, \tilde{\beta} > -1, t <= s \) (see [40]) valid for \(0 < t \leq s \), gives implications \(2 \Rightarrow 1 \).

We fix a test function as in previous theorem

\[
f_{a_k}(w) = B_{\tilde{\alpha}}(a_k, w), \quad \alpha > \alpha_0, \quad a_k, w \in T_\Omega, \quad k = 1, 2, \ldots
\]

where \(\{a_k\} \) is \(r \)-lattice and \(\alpha_0 \) is large enough. Let us fix a cube \(\Delta_k \). Using pointwise estimates from below for functions \(f_{a_k} \), see [29], we obtain:

\[
\mu(\Delta_k)^{1/p} \delta(a_k)^{-m(n-1+\tau)} \leq C \left(\int_{\Delta_k} |f_{a_k}(z)|^{mp} d\mu(z) \right)^{1/p} \tag{9}
\]

\[
\leq C \| (f_1, \ldots, f_m) \|_{A(p,q,m,d\mu)}, \quad k \geq 1.
\]

We then must also estimate \(\| f_{a_k} \|_{A^{s_1}} \) from above.

The important fact here is that \(\Delta \) determinant function is monotone (see for example [23] - [24]).

Note here, from [23] - [24] for estimate of test \(B_{\tilde{\alpha}}(z, w) \) function, the following estimate based on Lemma 5 must be used

\[
\int_{R^n} |B_{\tilde{\alpha}}(x, y)|^{q} d\sigma(x) \leq C(\Delta Im(x+y)^{q-s}),
\]

where for any \(\tilde{\alpha} > -1, \ s > 0, \ q = \tilde{\alpha}s, \ y \in \Omega, \) and that

\[
\prod_{i=1}^{m} \| B_{\tau} \|_{A^{s_1}} \leq C \delta(a_k)^{\tau-m(n-1+\tau)}, \quad \tau = n-1+\tau, \quad \nu = \sum_{i=1}^{m} \beta_i + 2n/r \ s.
\]

We must now repeat these arguments for \(f_{a_k}(w) = \delta'(a_k)B_{\tilde{\alpha}}(a_k, w) \) with certain fixed \(s, \ s = s(\alpha) \) and use again estimates of Lemma 5. The rest is clear.

Theorem is proved.

The following is another new sharp theorem for multifunctional analytic spaces in tubular domains over symmetric cones.

Theorem 3. Let \(0 < p, q < \infty, \ 0 < \sigma_i \leq q, \ -1 < \alpha_i < \infty \) for \(i = 1, \ldots, m \). Let \(\mu \) be a positive Borel measure on \(T_\Omega \). Then the following two conditions are equivalent:
1. \[\| (f_1, \ldots, f_m) \|_{\Lambda(p,q,m,d\mu)}^q \leq C \prod_{i=1}^m \int_{T_\Omega} \left(\int_{B(w,r)} |f_i(z)|^\sigma \delta(z) d\nu(z) \right)^{q/\sigma} dw. \] (10)

2. The measure \(\mu \) satisfies a Carleson type condition:

\[\mu(\Delta_k) \leq C \delta(a_k)^{m(2n/r)^\frac{p}{q} + \sum_{i=1}^m \frac{p(2n/r+q_i)}{\sigma_i}}, \quad k \geq 1, \]

for any \(\{a_k\} \) \(r \)-lattice in \(T_\Omega \).

Proof of Theorem 3.

The implication \(1 \Rightarrow 2 \) is very similar to the same implication in Theorem 4 and we omit details. The only new ingredient is condition on kernel we put before Theorem 4.

Let us prove \(2 \Rightarrow 1 \) assuming \(m = 1 \) (general \(m > 1 \) case needs small modification). Let \(f = f_1 \in H(T_\Omega) \), then we have, using Lemma 1, Lemma 2 and Lemma 3:

\[\| (f_1, \ldots, f_m) \|_{\Lambda(p,q,m,d\mu)} = \sum_{k=1}^\infty \left(\int_{\Delta_k} |f(z)|^p d\mu(z) \right)^{q/p} \]

\[\leq \sum_{k=1}^\infty \max_{\Delta_k} |f(z)|^q \delta(a_k)^{\frac{q(2n/r+q_i)}{\sigma_i} + \frac{2n/r}{q_i}} \]

\[\leq \sum_{k=1}^\infty \left(\int_{\Delta_k^*} |f(z)|^\sigma \delta(z)^{-2n/r} d\nu(z) \right)^{q/\sigma} \delta(a_k)^{2n/r+q\alpha/\sigma}. \]

We continue this estimation, using Lemma 2, Lemma 3, Lemma 4 and Lemma 5, and obtain

\[\| (f_1, \ldots, f_m) \|_{\Lambda(p,q,m,d\mu)} \]

\[\leq C \sum_{k=1}^\infty \left(\int_{\Delta_k^*} \left(\int_{B(z,r)} |f(w)|^\sigma \delta(w)^{q(r/a)} d\nu(w) \right) \delta(z)^{-2n/r} d\nu(z) \right)^{q/\sigma} \delta(a_k)^{2n/r+q\alpha/\sigma} \]

\[\leq C \sum_{k=1}^\infty \left(\int_{\Delta_k^*} \left(\int_{B(z,r)} |f(w)|^\sigma \delta(w)^{q(r/a)} d\nu(w) \right) \delta(z)^{-2n/r} d\nu(z) \right)^{q/\sigma} \delta(a_k)^{2n/r} \]

\[\leq C \sum_{k=1}^\infty \int_{\Delta_k^*} \left(\int_{B(z,r)} |f(w)|^\sigma \delta(w)^{q(r/a)} d\nu(w) \right)^{q/\sigma} \delta(z)^{-2n/r} d\nu(z) \delta(a_k)^{2n/r}, \] (11)

arriving at (10) for \(m = 1 \). Note that at (11) we used Holder’s inequality and at the last step we used finite overlapping property of the cubes \(\Delta_k^* \), (see [23] - [24]).

The case of \(m \) functions use Hölders inequality for \(m \) functions, only multiple sums appears as in proof of Theorem 4. Since \(m > 1 \) case uses same ideas, we omit easy details.

Theorem is proved.

In our Theorems 4 and 5 below we consider another two new scales of Herz-type spaces (multifunctional) defined with the help of the following expressions:
\[
\prod_{i=1}^{m} \left(\sum_{i=1}^{\infty} \left(\int_{\Delta_i} |f_i(z)|^p \delta^\alpha(z) dv(z) \right)^\frac{1}{q_i} \right)\frac{1}{\sum_{i=1}^{m} \frac{1}{q_i}},
\]

and prove some sharp assertions also for them. Proofs here will be sketchy since ideas we already provided will be repeated partially by us below.

Theorem 4. Let \(\mu \) be a positive Borel measure on \(T_\Omega \). Let \(0 < p_i, q_i < \infty, i = 1, \ldots, m \), let \(\sum_{i=1}^{m} \frac{1}{q_i} = 1, \alpha > -1 \). Then the following conditions are equivalent:

1. If \(f_i \in H(T_\Omega), i = 1 \ldots m \) then

\[
\int_{T_\Omega} \prod_{i=1}^{m} |f_i(z)|^p d\mu(z) \leq c \prod_{i=1}^{m} \left(\sum_{i=1}^{\infty} \left(\int_{\Delta_i} |f_i(z)|^p \delta^\alpha(z) dv(z) \right)^\frac{1}{q_i} \right)\frac{1}{\sum_{i=1}^{m} \frac{1}{q_i}}.
\]

2. The measure \(\mu \) satisfies a Carleson type condition

\[
\mu(\Delta_k) \leq C |\Delta_k|^m \left(1 + \frac{\alpha}{2n/r} \right) \text{ for } k \geq 1.
\]

Proof of Theorem 4.

Assume that positive Borel measure satisfies \(\mu(\Delta_k) \leq c \Delta_k^m \left(1 + \frac{\alpha}{2n/r} \right) \), \(k \geq 1 \).

Then we have using Lemmas 1 and 2

\[
\int_{T_\Omega} \prod_{i=1}^{m} |f_i(z)|^p d\mu(z) \leq \sum_{k=1}^{\infty} \mu(\Delta_k) \prod_{i=1}^{m} \sup_{\Delta_k} |f_i|^p
\]

\[
\leq c \sum_{k=1}^{\infty} \mu(\Delta_k) \delta(a_k)^{-m(2n/r+\alpha)} \prod_{i=1}^{m} \int_{\Delta_i} |f_i(w)|^p \delta^\alpha(w) dv(w)
\]

\[
\leq \tilde{c} \sum_{k=1}^{\infty} \prod_{i=1}^{m} \int_{\Delta_i} |f_i(w)|^p \delta^\alpha(w) dv(w),
\]

so we get what we need now.

Let us show the reverse of assertion in theorem. We fix \(\tilde{n} \in \mathbb{N} \). Let

\(f_i(z) = f_i(\tilde{n}, w, z) = B_{\tilde{n}-1}(z, w), \ w \in T_\Omega \).

Clearly \(\prod_{i=1}^{m} |f_i(z)|^{p_i} = |B_{\sum_{i=1}^{m} p_i(\tilde{n}-1)}(z, w)| \).

Hence using lemmas we have (see remark after Lemma 2 and Proposition 2)

\[
\frac{\mu(\Delta_k)}{\delta(a_k)^{(n-1)\sum_{i=1}^{m} p_i}} \leq c \int_{\Delta_k} |B_{\tau}(z, w)| d\mu(z) \leq c_1 \int_{T_\Omega} \prod_{i=1}^{m} |f_i(z)|^{p_i} d\mu(z) = M.
\]

Estimating from other side we have using \((\sum_{k \geq 0} a_k)^q \leq \sum_{k \geq 0} a_k^q, q \leq 1, a_k \geq 0, \)

\[
M \leq c_2 \prod_{i=1}^{m} \sum_{k \geq 1} \int_{\Delta_k} \delta^\alpha(z) B_{p_i(\tilde{n}-1)}(z, w) dv(z) \leq c_3 \prod_{i=1}^{m} \delta(a_k)^{\alpha-p_i(\tilde{n}-1)+2n/r},
\]

74
and we have what we need.

Theorem is proved.

Remark 1. Our Theorem 4 for bounded pseudoconvex domains can be seen in [25]. The same proof can be given in bounded symmetric domains based on properties of r-lattices on these domains. Note also the additional condition on Bergman kernel used in the proof of Theorems 3, 5 can be removed based on some results of Sehba (see [31], [36]).

The following additional condition on analytic \((f_i)_{i=1}^m\) functions (which probably can be removed) is needed for our last theorem with condition on kernel (see before Theorem 4). We assume that for any Bergman ball \(B(w, r)\)

\[
(\delta(a_k))^{2n/r} \left(\int_{B^c(a_k, r)} |f_i(z)|^{\sigma_i} \right)^{\frac{p_i}{\sigma_i}} dv_{\alpha_k}(z) \leq c \int_{B(a_k, r)} \left(\int_{B(w, r)} |f_i(z)|^{\sigma_i} dv_{\alpha_k}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w),
\]

where \(\{a_k\}\) is any r-lattice, \(0 < p_i, \sigma_i < \infty, \alpha_i > -1, j = 1, \ldots, m, d\nu_{\alpha_k} = \delta^{\alpha_k}(z) dv(z)\).

Theorem 5. Let \(0 < p_i, \sigma_i < \infty, -1 < \alpha_i < \infty, i = 1, \ldots, m\). Let \(\mu\) be a positive Borel measure on \(T_\Omega\). Then the following conditions are equivalent:

1. If \(f_i \in H(T_\Omega), i = 1, \ldots, m\) then

\[
\int_{T_\Omega} \prod_{i=1}^m |f_i(z)|^{p_i} d\mu(z) \leq c \prod_{i=1}^m \int_{T_\Omega} \left(\int_{B(w, r)} |f_i(z)|^{\sigma_i} dv_{\alpha_k}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w).
\]

2. The positive Borel measure \(\mu\) satisfies the following Carleson type condition:

\(\mu(\Delta_k) \leq c_1 \delta(a_k)^{7},\) where \(\tau = m(2n/r) + \sum_{i=1}^m \frac{p_i(2n/r + \alpha_i)}{\sigma_i}, k \geq 1\) for some constants \(c, c_1\), and for any \(\{a_k\}\) r-lattice in \(T_\Omega\).

Proof of Theorem 5.

Let us assume \(\mu(\Delta_k) \leq c_1 \delta(a_k)^{m(2n/r) + \sum_{i=1}^m \frac{p_i(2n/r + \alpha_i)}{\sigma_i}}, k \geq 1\) holds. Let farther \(p_i(n - 1 + l) > (2n/r) + \frac{p_i}{\sigma_i}(2n/r + \alpha_i), i = 1, \ldots, m\).

We have using same test function defined with the help of weighted Bergman kernel \(B_{\tau}(z, w)\) as in proof of our previous theorem, using condition on kernel and Proposition 2 and important known estimate from below of Bergman kernel \(B_{\tau}(z, w)\) on the Bergman balls \(B(z, r), w \in B(z, r), z, w \in T_\Omega\).

\[
\delta(a_k)^{-(n-1+l)\sum_{i=1}^m p_i} \mu(\Delta_k) \leq c \int_{T_\Omega} \prod_{i=1}^m |f_i(z)|^{p_i} d\mu(z)
\]

\[
\leq c \prod_{i=1}^m \int_{T_\Omega} \left(\int_{B(w, r)} |f_i(z)|^{\sigma_i} dv_{\alpha_k}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w)
\]

\[
\leq c \delta(a_k)^{\tilde{\tau}^*} d\nu_{\alpha_k}(w) \leq c_3 \delta(a_k)^{\tilde{\tau}^*};
\]

for some fixed \(\tau, \tilde{\tau}, \tilde{\tau} = -(n-1+l)\sum_{i=1}^m p_i + m(2n/r) + \sum_{i=1}^m \frac{p_i}{\sigma_i}(2n/r + \alpha_i), \tau > \tau_0\) which can be calculated easily.

Let us show the reverse, using finite overlapping property of \(B(a_k, r)\) balls. We have
\[
\prod_{i=1}^{m} \int_{B_{(\omega, r)}} \left(\int_{B(w, r)} |f_i(z)|^{\sigma_i} d\nu_{\alpha_i}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w) \geq \\
\geq c \sum_{k=1}^{\infty} \prod_{i=1}^{m} \int_{B_{(\omega, r)}} \left(\int_{B(w, r)} |f_i(z)|^{\sigma_i} d\nu_{\alpha_i}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w),
\]
and we have also that
\[
\int_{B_{(\omega, r)}} \prod_{i=1}^{m} |f_i(z)|^{p_i} d\mu(z) \leq \mu(\Delta_k) \prod_{i=1}^{m} \max_{z \in \Delta_k} |f_i(z)|^{p_i} \leq c \delta(a_k)^{\tilde{\tau}_1} \left(\prod_{i=1}^{m} \max_{z \in \Delta_k} |f_i(z)|^{p_i} \right),
\]
for \(\tilde{\tau}_1 = m(2n/r) + \sum_{i=1}^{m} \frac{p_i(2n/r + \alpha_i)}{\sigma_i} \).

Therefore it suffices to show that for \(k \geq 1, 1 \leq i \leq m \) and some \(\tau_2 \) fixed number
\[
\delta(a_k)^{\tau_2} \max_{z \in \Delta_k} |f_i(z)|^{p_i} \leq c \int_{\Delta_k} \left(\int_{B(\omega, r)} |f_i(z)|^{\sigma_i} d\nu_{\alpha_i}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w),
\]
where \(\tau_2 = (2n/r) + \frac{p_i(2n/r + \alpha_i)}{\sigma_i} \).

But, using basic Lemma 4 and additional integral condition on a set of analytic \(\{f_i\} \) functions we put before this theorem above we have for some fixed \(\tau_2 \)
\[
\delta(a_k)^{\tau_2} \max_{z \in \Delta_k} |f_i(z)|^{p_i} \leq c_1 \delta(a_k)^{2n/r} \left(\int_{\Delta_k} |f_i(z)|^{\sigma_i} d\nu_{\alpha_i}(z) \right)^{\frac{p_i}{\sigma_i}} \\
\leq c_1 \int_{\Delta_k} \left(\int_{B(\omega, r)} |f(z)|^{\sigma_i} d\nu_{\alpha_i}(z) \right)^{\frac{p_i}{\sigma_i}} dv(w),
\]
and the proof of our theorem is now completed.

Theorem is proved.

Remark 2. Very similar results with similar proof scan be shown for similar type spaces in bounded strongly pseudoconvex domains (see [1], [21] - [26] for one functional case for similar results), based on known properties of \(r \)-lattices on these domains (see [8] - [7]).

Remark 3. Very similar sharp results with similar proofs can be provided (under some condition on kernel) in bounded symmetric domains in \(\mathbb{C}^n \) based on known properties of \(r \)-lattices on these domains (see [6]).

Competing interests. The authors declare that there are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.
References

О некоторых новых точных теоремах для мультифункциональных аналитических пространств типа Бергмана и типа Герца в трубчатой области над симметрические и конусами

Р. Ф. Шамоян, Е. Б. Томашевская

Брянский государственный технический университет, 241050, г. Брянск, Россия
E-mail: rsham@mail.ru, tomele@mail.ru

В статье вводятся многофункциональные аналитические пространства типа Герца со смешанной нормой в трубчатых областях над симметрическими конусами и для этих пространств доказываются новые точные теоремы вложения. Некоторые наши утверждения являются новыми и в частном случае, то есть для однофункциональных пространств типа Герца. В неограниченных областях указанного типа вводятся новые многофункциональные аналитические пространства типа Бергмана и доказываются подобные новые точные теоремы вложения при одном дополнительном условии на ядро Бергмана.

Ключевые слова: аналитические функции, трубчатая область, пространство Герца, пространство Бергмана, теоремы вложения.

DOI: 10.26117/2079-6641-2021-34-1-63-79

Для цитирования. Shamoyan R.F., Tomashevskaya E.B. On new sharp embedding theorems for multifunctional Herz-type and Bergman-type spaces in tubular domains over symmetric cones // Вестник КРАУНЦ. Физ.-мат. науки. 2021. Т. 34. № 1. С. 63-79. DOI: 10.26117/2079-6641-2021-34-1-63-79

Конкурирующие интересы. Авторы заявляют, что конфликтов интересов в отношении авторства и публикации нет.

Авторский вклад и ответственность. Все авторы участвовали в написании статьи и полностью несут ответственность за предоставление окончательной версии статьи в печать. Окончательная версия рукописи была одобрена всеми авторами.

Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/deed.ru) © Шамоян Р. Ф., Томашевская Е. Б., 2021

Финансирование. Исследование выполнялось без финансовой поддержки фондов.