Bulletin KRASEC. Phys. & Math. Sci. 2017. vol. 16, issue. 1. pp. 61-68. ISSN 2313-0156

DOI: 10.18454/2313-0156-2017-16-1-61-68

MSC 34A08


D. A. Tvyordyj

Vitus Bering Kamchatka State University, 683032, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia

E-mail: diplomat95@mail.ru

The Riccati differential equation with fractional derivative of variable order is considered. Introduction of a derivative of fractional variable order into the initial equation determines the property of a medium, the memory effect or the heredity, which consists in the dependence of the dynamic system current state on its previous states.

Key words: Riccati equation, fractional derivative, heredity, numerical methods, differential equation.



  1. Uchaykin V.V. Metod drobnykh proizvodnykh [Fractional derivative method]. Ul’yanovsk. Artishok. 2008. 512 p.
    2. Petras I. Fractional-order nonlinear systems: modeling, analysis and simulation. Springer Science & Business Media. 2011. 218 p.
    3. Volterra V. Sur les ’equations int´egro-diff´erentielles et leurs applications. Acta Mathematica. 1912. vol. 35. no. 1. pp. 295–356.
    4. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. Fizmatlit. 2003. 272 p.
    5. Riccati J. Animadversiones in aequationes differentiales secundi gradus. Actorum Eruditorum Supplementa. 1724. vol. 8. pp. 66–73.
    6. Sweilam N. H., Khader M. M., Mahdy A. M. S. Numerical studies for solving fractional Riccati differential equation. Applications and Applied Mathematics. 2012. vol. 7. no. 2. pp. 595–608.
    7. Feder E. Fraktaly [Fractals]. Moscow. Mir. 1991. 254 p.
    8. Parovik R. I. Matematicheskoe modelirovanie lineynykh ereditarnykh ostsillyatorov [Mathematical modeling of linear heredity oscillators]. Petropavlovsk-Kamchatskiy. KamGU imeni Vitusa Beringa. 2015. 178 p.
    9. Parovik R. I. Finite-differential schemes for fractal oscillator with variable fractional orders. Bulletin KRASEC. Physical and Mathematical Sciences. 2015. vol. 11. no. 2. pp. 85–92.
    10. Berezin I. S., Zhidkov N. P. Metody vychisleniy [Calculus methods]. Moscow. Fizmatlit. 1962
    11. Makarov D.V., Parovik R. I. Modeling of the economic cycles using the theory of fractional calculus. Journal of Internet Banking and Commerce. 2016. vol. 21. S6.
    12. Tverdyy D. A. Uravnenie Rikkati s proizvodnoy drobnogo peremennogo poryadka [Riccati equation with fractional variable derivative]. Mezhdunarodnyy studencheskiy nauchnyy vestnik 2017 – International Student Scientific Bulletin. 2017. no. 2. pp. 42-42. https://www.eduherald.ru/ru/article/view id=16889(reference date: 22.04.2017).

For citation: Tvyordyj D. A. Riccati equation with variable heredity. Bulletin KRASEC. Physical and Mathematical Sciences 2017, vol. 16, issue 1, 61-68. DOI: 10.18454/2313-0156-2017-16-1-61-68.

Original article submitted: 22.03.2017




      Tverdiy Dmitry Alexandrovich – master student of the second year of the direction of preparation «Applied Mathematics and Informatics Kamchatka State University named after Vitus Bering.

Download article  Tverdiy D.A.